scholarly journals Internet of Things: Low Cost and Wearable SpO2 Device for Health Monitoring

Author(s):  
R. R. Adiputra ◽  
S. Hadiyoso ◽  
Y. Sun Hariyani

This paper discusses a device for measuring oxygen saturation (SpO2) and heart rate as parameters of the representations of heart conditions. SpO2 device that have been made has a small dimension, wearable and high mobility with battery as the main power source. The device connects to a node MCU as a data processor and an internet network gateway to support internet of things applications. Data sent to the Internet cloud can be accessed online and real time via website for further analysis. The error rate at heart rate measurement is ± 2.8 BPM and for oxygen saturation (SpO2) is ± 1.5%. Testing data transmission delay until it can be displayed on website is 3 second that depends on internet traffic conditions.

2019 ◽  
Vol 15 (5) ◽  
pp. 155014771984712 ◽  
Author(s):  
Leonardo Juan Ramírez López ◽  
Arturo Rodriguez Garcia ◽  
Gabriel Puerta Aponte

The implementation of the Internet of things in healthcare is a promising challenge to achieve coverage for a bigger number of users in different places at lower costs. Internet of things might mean better technology regarding response time and proper control of medical parameters. This study introduces an Internet-of-things system for healthcare with possibilities to control medical variables according to recent breakthroughs in sensors and data processing. The goal of the system is to optimize the development of applications to obtain variables in real time and with less energy consumption. The proposed model is validated on the measurement and monitoring of oxygen saturation, heart rate, and body temperature in patients with respiratory disorders. This was achieved by the optimization of data acquisition, integrated into a secure architecture using Message Queuing Telemetry Transport protocol. A cloud architecture with interconnection to low-cost and open-source devices was implemented, which interconnect to the sensors and actuators’ network. The experimental results were statistically treated against the device pattern data, through hypothesis tests for mean differences to probe the accuracy of the model. Finally, the proposed model demonstrates an efficient performance in several clinical parameters, such as oxygen saturation and heart rate per minute.


Author(s):  
G Sidhartha

Abstract: In recent times, we have realized the importance of vital signs such as Oxygen saturation and heart rate i.e beats per minute (BPM) due to the covid-19 situation worldwide. SpO2 and BPM are being used as preliminary indicators for testing a person’s health, the drop in the oxygen saturation is perceived as one of the symptoms of a person suffering from coronavirus. Oximeters are portable devices that are used to measure the SpO2 and BPM of a person. Timely measurements of oxygen saturation can aid in taking preventive measures. This paper discusses the construction and development of an IoT-based pulse oximeter that is capable of transmitting the reading obtained to any remote location wirelessly. The proposed system uses Arduino as the microcontroller which is used for signal processing and Esp-01 as the Wifi platform to enable remote data transmission. The data is communicated remotely through Blynk mobile application. This project is aimed at reducing the manual effort undergone in regularly updating the oxygen saturation to the doctor, in the case of a person undergoing home treatment. Though an oximeter is not a screening te st, it is a primary indicator of a person’s health. Keywords: Heart rate, SpO2, IoT, Arduino, BLYNK server, Red, IR.


Author(s):  
Adan Torralba Ayance ◽  
Hector Santiago Ramirez ◽  
Jose Miguel Rocha Perez ◽  
Carlos Gerardo Trevino Palacios

Author(s):  
Yuriy Kondratenko ◽  
Oleksandr Gerasin ◽  
Oleksiy Kozlov ◽  
Andriy Topalov ◽  
Bogdan Kilimanov

The article presents the main stages of the development of remote control system for the inspection mobile robot operating on inclined ferromagnetic surfaces. The mobile robot remains on the surface and moves along working areas using separate clamping permanent magnets and caterpillars. The focus is on the control system’s architecture and remote data transmission based on Internet of Things technologies. Features of non-expensive Arduino Uno and WeMos D1 R2 mini microcontrolled development boards, cloud service Blynk, as well as multi-tab Android application interactions are revealed at the inspection mobile robot movement on the inclined surface. Experimental results of the proposed system show a good compatibility of chosen hardware, user-friendly human-machine interface and high mobility for future research of modern control algorithms at Internet of Things approach implementation for the extreme robotics.


This research work aims to create awareness and monitor the breath rate of a neonate using the air flow sensors and to reduce the number of infants’ death. It is designed based on the Arduino which is open-source electronics platform for hardware and software use. This prototype is developed for reliable and efficient baby monitoring system and play as infant care and monitoring system.A cardio respiratory system is used to monitor the infant’s heart rate, rhythm, breathing rate and other relevant and useful medical information using Electro Cardio Graph (ECG) and other IoT (Internet of Things) devices.This research work proved that the respiration monitoring system for infants can be implemented at low cost and also can prevent the respiration failure deaths.


2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
Nurul Nazirah Mohd Imam Ma’arof ◽  
Norsheila Fisalb

Mobile Multihop Relay (MMR) network is an attractive and low-cost solution for expanding service coverage and enhancing throughput of the conventional single hop network. However, mobility of Mobile Station (MS) in MMR network might lead to performance degradation in terms of Quality of Service (QoS). Selecting an appropriate Relay Station (RS) that can support data transmission for high mobility MS to enhance QoS is one of the challenges in MMR network. The main goal of the work is to develop and enhance relay selection mechanisms that can assure continuous connectivity while ensuring QoS in MMR network using NCTUns simulation tools. The approach is to develop and enhance relay selection that allows cooperative data transmission in transparent relay that guarantees continuous connectivity. The proposed relay selection defined as Co-ReSL depends on weightage of SNR, 𝛼 and weightage of Link Expiration Time (LET), β. The QoS performances of the proposed relay selections are in terms of throughput and average end-to-end (ETE) delay. The findings for Co-ReSL shows that at heavy traffic load, throughput increases up to 5.7% and average ETE delay reduces by 7.5% compared to Movement Aware Greedy Forwarding (MAGF) due to cooperative data transmission in selective links. The proposed relay selection mechanisms can be applied in any high mobility multi-tier cellular network.


Author(s):  
ADNAN RAFI AL TAHTAWI ◽  
TRISIANI DEWI HENDRAWATI ◽  
AIM ABDURRAHIM ◽  
ERICK ANDIKA

ABSTRAKPengontrolan lampu melalui jaringan internet adalah salah satu contoh aplikasi berbasis teknologi Internet of Things (IoT). Tujuan penelitian ini adalah untuk merancang sistem kontrol dan penjadwalan lampu berbasis IoT, serta melakukan analisis terhadap kinerja sistem tersebut. Sistem ini dibangun menggunakan mikrokontroler NodeMCU yang telah terintegrasi dengan modul WiFi. Pengendali relai dirancang dengan algoritma sederhana menggunakan objek tombol di aplikasi Android sebagai perangkat antarmuka. Selain memberikan perintah secara langsung, aplikasi Android juga dirancang agar dapat menjadwalkan ON/OFF lampu melalui akses akun pengguna. Hasil pengujian menunjukkan bahwa sistem dapat terhubung dengan jaringan internet melalui modul WiFi. Lampu berhasil dikontrol dan dijadwalkan sesuai dengan beberapa skenario pengujian. Hasil uji waktu respon pengiriman data menunjukkan bahwa waktu tunda rata-rata pengiriman perintah dari aplikasi Android ke sistem adalah kurang dari 5 detik.Kata kunci: NodeMCU, IoT, sistem kontrol, penjadwalan, Android ABSTRACTLighting control over the internet network is one example of Internet of Things (IoT) applications. The aim of this research is to design a light control and scheduling system based on IoT, and also to analyze its performances. This system is built using low-cost NodeMCU microcontroller that has integrated with the WiFi module. Relay controller is designed with simple algorithm using push button object in an Android application as an interface device. Besides giving command directly, the Android application is also designed to schedule ON/OFF the lights through user account access. The testing results indicate that the system able to connect with internet network via WiFi module. The lights are sucessfully controlled and scheduled according to several testing scenarios. Time respon testing result shows that the average delay data transmission from Android application to system hardware is less than 5 seconds.Keywords: NodeMCU, IoT, control system, scheduling, Android


Patient monitoring is the heart of the health care domain in day to day life either at home or at hospital. This paper focuses an Intelligent ECG Monitoring System to monitor the heart patients residing at distant places at low cost and complexity using Internet of Things. The proposed system automatically screens the health condition of the patient and records their Electrocardiogram through heart rate sensor and ATtiny Board. ATtiny is a low cost IoT device used along with heart rate sensor and ESP8266 to record the electrocardiogram of the patients. The ECG is sent to the doctors, nurses or the patient’s relatives residing in the remote places through the internet to help them in remote monitoring of the patients with ease.


Sign in / Sign up

Export Citation Format

Share Document