scholarly journals Sensor Based Automatic Neonate Respiration Monitoring System

This research work aims to create awareness and monitor the breath rate of a neonate using the air flow sensors and to reduce the number of infants’ death. It is designed based on the Arduino which is open-source electronics platform for hardware and software use. This prototype is developed for reliable and efficient baby monitoring system and play as infant care and monitoring system.A cardio respiratory system is used to monitor the infant’s heart rate, rhythm, breathing rate and other relevant and useful medical information using Electro Cardio Graph (ECG) and other IoT (Internet of Things) devices.This research work proved that the respiration monitoring system for infants can be implemented at low cost and also can prevent the respiration failure deaths.

Author(s):  
Ifeoma V. Ngonadi

The Internet of Things (IoT) is a system of interrelated computing devices, mechanical and digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer data over a network without requiring human-to-human or human-to-computer interaction. Remote patient monitoring enables the monitoring of patients’ vital signs outside the conventional clinical settings which may increase access to care and decrease healthcare delivery costs. This paper focuses on implementing internet of things in a remote patient medical monitoring system. This was achieved by writing two computer applications in java in which one simulates a mobile phone called the Intelligent Personal Digital Assistant (IPDA) which uses a data structure that includes age, smoking habits and alcohol intake to simulate readings for blood pressure, pulse rate and mean arterial pressure continuously every twenty five which it sends to the server. The second java application protects the patients’ medical records as they travel through the networks by employing a symmetric key encryption algorithm which encrypts the patients’ medical records as they are generated and can only be decrypted in the server only by authorized personnel. The result of this research work is the implementation of internet of things in a remote patient medical monitoring system where patients’ vital signs are generated and transferred to the server continuously without human intervention.


Author(s):  
Rishav Singh ◽  
Tanveer Ahmed ◽  
Ritika Singh ◽  
Shrikant Tiwari

METANA ◽  
2019 ◽  
Vol 15 (2) ◽  
pp. 49-56
Author(s):  
Dista Yoel Tadeus ◽  
Khasnan Azazi ◽  
Didik Ariwibowo

Ikan hias dan vegetasi air memiliki rentang toleransi terhadap nilai parameter lingkungan. Parameter tersebut hendaknya senantiasa diawasi demi kelangsungan hidupnya. Internet of Things (IoT) telah dimanfaatkan sebagai sistem monitoring dan otomasi parameter lingkungan ikan dan vegetasi air namun sistem ini membutuhkan biaya yang tinggi. Tujuan penelitian ini adalah mengembangkan suatu model sistem monitoring berbasis IoT berbiaya rendah untuk memberikan informasi parameter pH dan kekeruhan air setiap saat kepada pemilik ikan hias. Sistem ini dibangun menggunakan komponen opensource dan sensor berbiaya rendah. Data monitoring digunakan untuk mengaktifkan aktuator berupa filter air. Filter akan aktif apabila tingkat kekeruhan air sudah melebihi batas kekeruhan yang ditentukan. Pengujian kekeruhan air aquarium menunjukkan saat kekeruhan mencapai 3000 ntu pukul 14.12 pompa aktif dan filter bekerja sampai kekeruhan berada pada nilai 498 ntu pada pukul 17.00 dan pompa mati secara otomatis. Nilai pH dan kekeruhan air berhasil ditampilkan dengan baik di aplikasi Blynk pada ponsel. Hasil pengujian menyimpulkan bahwa sistem monitoring yang dikembangkan telah berhasil diimplementasikan dengan baik.  Ornamental fish and aquatic vegetation have a tolerance range of environmental parameter values. These parameters should always be monitored for survival. Internet of Things (IoT) has been utilized as a monitoring and automation system for environmental parameters of fish and aquatic vegetation, but this system requires high costs. The purpose of this study is to develop a low-cost IoT-based monitoring system model to provide information on pH parameters and water turbidity at any time to ornamental fish owners. This system is built using opensource components and low-cost sensors. Monitoring data is used to activate the actuator in the form of a water filter. The filter will active if the turbidity level of water has exceeded the specified turbidity limit. The aquarium water turbidity test showed that when the turbidity reached 3000 ntu at 14.12 the pump was active and the filter worked until the turbidity was at 498 ntu at 17.00 and the pump automatically shut down. The pH value and the turbidity of the water were successfully displayed in the Blynk application on the cellphone. The test results concluded that the monitoring system developed was successfully implemented. 


2020 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Nuzhat Ahmed ◽  
Yong Zhu

Atrial fibrillation, often called AF is considered to be the most common type of cardiac arrhythmia, which is a major healthcare challenge. Early detection of AF and the appropriate treatment is crucial if the symptoms seem to be consistent and persistent. This research work focused on the development of a heart monitoring system which could be considered as a feasible solution in early detection of potential AF in real time. The objective was to bridge the gap in the market for a low-cost, at home use, noninvasive heart health monitoring system specifically designed to periodically monitor heart health in subjects with AF disorder concerns. The main characteristic of AF disorder is the considerably higher heartbeat and the varying period between observed R waves in electrocardiogram (ECG) signals. This proposed research was conducted to develop a low cost and easy to use device that measures and analyzes the heartbeat variations, varying time period between successive R peaks of the ECG signal and compares the result with the normal heart rate and RR intervals. Upon exceeding the threshold values, this device creates an alert to notify about the possible AF detection. The prototype for this research consisted of a Bitalino ECG sensor and electrodes, an Arduino microcontroller, and a simple circuit. The data was acquired and analyzed using the Arduino software in real time. The prototype was used to analyze healthy ECG data and using the MIT-BIH database the real AF patient data was analyzed, and reasonable threshold values were found, which yielded a reasonable success rate of AF detection.


Author(s):  
Jehan Parvez

The power transformer is the most important and expensive element in the power system. It is used to change the voltage levels at different stages in a power system. The foremost responsibility of the utility grid is to ensure smooth and reliable availability of power through the transformer. But there are different abnormal conditions that can occur in the transformer such as overheating, overexcitation, abnormal frequency, overload, abnormal voltage, open circuit, and breaker failure. These abnormal conditions reduce the life, efficiency, and performance of the transformer, as a result, the overall reliability of the power system gets decreased. Moreover, in case of any failure of the power transformer, the consumers will suffer a severe power outage and consequently, a massive economic loss will occur. During abnormal conditions, the health of a transformer is deteriorating, and it is very important, that the operator should act quickly and accurately in terms of any abnormality occurred. For this purpose, need a proper health monitoring system that should properly monitor the health of the transformer and take proper action to prevent it from greater damages. The proposed system is user-friendly, flexible, reliable, and presenting more functionalities with almost 10 times lower cost than the existing system. This research work has developed a low-cost GSM and internet of things (IoT) based indigenous prototype for transformer monitoring that will be able to early inform the relevant staff through SMS and web data for the different abnormal conditions.


Author(s):  
Alamsyah Alamsyah ◽  
Mery Subito ◽  
Mohammad Ikhlayel ◽  
Eko Setijadi

Wireless network technology-based internet of things (IoT) has increased significantly and exciting to study, especially vital sign monitoring (body temperature, heart rate, and blood pressure). Vital sign monitoring is crucial to carry out to strengthen medical diagnoses and the continuity of patient health. Vital sign monitoring conducted by medical personnel to diagnose the patient's health condition is still manual. Medical staff must visit patients in each room, and the equipment used is still cable-based. Vital sign examination like this is certainly not practical because it requires a long time in the process of diagnosis. The proposed vital sign monitoring system design aims to assist medical personnel in diagnosing the patient's illness. Vital sign monitoring system uses HRM-2511E sensor for heart detection, DS18b20 sensor for body temperature detection, and MPX5050DP sensor for blood pressure detection. Vital sign data processing uses a raspberry pi as a data delivery media-based internet of things (IoT). Based on the results of the vital sign data retrieval shows that the tool designed functioning correctly. The accuracy of the proposed device for body temperature is 99.51%, heart rate is 97.90%, and blood pressure is 97.69%.


2019 ◽  
Vol 8 (4) ◽  
pp. 6262-6267

Weather monitoring and forecasting system plays an important role nowadays in all the aspect of science, trade and other fields not limited to the field of cultivation, farming, fishery, naval trade, shipping, military operations, air navigation etc. Wind speed and wind direction is one of the most vital weather variables like moisture, pressure, temperature, density, rain forecast, solar radiation, clouds, air masses, fronts and storms. In this paper, a low cost PIC16F887 microcontroller based portable wind speed and wind direction monitoring system called an anemometer is designed & experimented. The designed anemometer is divided into two parts namely mechanical and electrical parts. Both parts are developed, designed and tested in this research work. Wind turns the cup of Anemometer and produced mechanical energy that converted to electrical energy or signal. The electrical signal or pulse intervals determine by the microcontroller and generate consequence pulses to find out the wind speed. The programming codes inside the microcontroller helps to extract the voltage drops measured from a potentiometer connected to the mechanical part of Anemometer and intellect the wind direction precisely. A lucrative 16x2 liquid crystal display (LCD) is used to display the wind speed and direction.


Sign in / Sign up

Export Citation Format

Share Document