scholarly journals Half-duplex power beacon-assisted energy harvesting relaying networks: system performance analysis

Author(s):  
Tan N. Nguyen ◽  
Minh Tran ◽  
Van-Duc Phan ◽  
Hoang-Nam Nguyen ◽  
Thanh-Long Nguyen

<p>In this work, the half-duplex (HF) power beacon-assisted (PB) energy harvesting (EH) relaying network, which consists of a source (S), Relay (R), destination (D) and a power beacon (PB) are introduced and investigated. Firstly, the analytical expressions of the system performance in term of outage probability (OP) and the system throughput (ST) are analyzed and derived in both amplify-and-forward (AF) and decode-and-forward (DF) modes. After that, we verify the correctness of the analytical analysis by using Monte-Carlo simulation in connection with the primary system parameters. From the numerical results, we can see that all the analytical and the simulation results are matched well with each other.</p>

2019 ◽  
Vol 9 (11) ◽  
pp. 2283 ◽  
Author(s):  
Duy-Hung Ha ◽  
Si Thien Chau Dong ◽  
Tan N. Nguyen ◽  
Tran Thanh Trang ◽  
Miroslav Voznak

In this paper, we introduce a half-duplex (HD) energy harvesting (EH) relay network over the different fading environment with the effect of hardware impairment (HI). The model system was investigated with the amplify-and-forward (AF) and the power splitting (PS) protocols. The system performance analysis in term of the outage probability (OP), achievable throughput (AT), and bit error rate (BER) were demonstrated with the closed-form expressions. In addition, the power splitting (PS) factor was investigated. We verified the analytical analysis by Monte Carlo simulation with all primary parameters. From the results, we can state that the analytical and simulation results match well with each other.


2020 ◽  
Vol 9 (1) ◽  
pp. 265-272
Author(s):  
Phu Tran Tin ◽  
Minh Tran ◽  
Tran Thanh Trang

Relay communication is considered as a popular solution for expanding the coverage, increasing the transmission capacity and reducing the power consumption of the communication networks. In this paper, we proposed and investigated the two-way decode-and-forward (DF) half-duplex (HD) relaying network with the direct link between two sources S1 and S2. Firstly, the system model, energy harvesting (EH) and information transmission (IT) are presented. The closed-form analytical expression of the system outage probability (OP) is analyzed and derived in the next stage. Finally, the correctness of the analytical expressions is verified by Monte Carlo simulation. The research results show that the analytical and simulation are the same in connection with the primary system parameters.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2579 ◽  
Author(s):  
Van-Duc Phan ◽  
Tan N. Nguyen ◽  
Minh Tran ◽  
Tran Thanh Trang ◽  
Miroslav Voznak ◽  
...  

In this time, energy efficiency (EE), measured in bits per Watt, has been considered as an important emerging metric in energy-constrained wireless communication networks because of their energy shortage. In this paper, we investigate power beacon assisted (PB) energy harvesting (EH) in half-duplex (HD) communication network under co-channel Interferer over Rayleigh fading environment. In this work, we investigate the model system with the time switching (TS) protocol. Firstly, the exact and asymptotic form expressions of the outage probability (OP) are analyzed and derived. Then the system EE is investigated and the influence of the primary system parameters on the system performance. Finally, we verify the correctness of the analytical expressions using Monte Carlo simulation. Finally, we can state that the simulation and analytical results are the same.


Author(s):  
Le Anh Vu ◽  
Minh Tran ◽  
Van-Duc Phan ◽  
Hoang-Nam Nguyen ◽  
Thanh-Long Nguyen

<span>In this research, the system performance of the half-duplex two-way relay network under hardware impairment condition is presented and investigated. In this system model, the time switching protocol and amplify-and-forward (AF)-based are considered. First, of all, the analytical expressions of the outage probability, and achievable throughput with the exact closed form and asymptotic form were proposed and derived. Furthermore, the research results are derived and convinced by Monte-Carlo calculation. The numerical results demonstrated and convinced the analytical and the simulation results are agreed for all possible system parameters.</span>


2018 ◽  
Vol 2 (1) ◽  
pp. 18
Author(s):  
Miroslav Voznak ◽  
Hoang Quang Minh Tran ◽  
N. Tan Nguyen

In recent years, harvesting energy from radio frequency (RF) signals has drawn significant research interest as a promising solution to solve the energy problem. In this paper, we analyze the effect of the interference noise on the wireless energy harvesting performance of a decode-and-forward (DF) relaying network. In this analysis, the energy and information are transferred from the source to the relay nodes in the delay-limited transmission and Delay-tolerant transmission modes by two methods: i) time switching protocol and ii) power splitting protocol. Firstly, due to the constraint of the wireless energy harvesting at the relay node, the analytical mathematical expressions of the achievable throughput, outage probability and ergodic capacity of both schemes were proposed and demonstrated. After that, the effect of various system parameters on the system performance is rigorously studied with closed-form expressions for system throughput, outage probability, and ergodic capacity. Finally, the analytical results are also demonstrated by Monte-Carlo simulation. The results show that the analytical mathematical and simulated results agree with each other.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1845 ◽  
Author(s):  
Thanh-Nam Tran ◽  
Miroslav Voznak

This article studied the application of multiple protocol switching mechanism (PSM) over cooperating Non-Orthogonal Multiple Access (NOMA) networks to minimize the probability of outage and maximize the system throughput and energy efficiency (EE). This study investigated six scenarios: (1) a cooperative NOMA system with half-duplex (HD) and decode-and-forward (DF) protocols at the relay; (2) a cooperative NOMA system with full-duplex (FD) and DF protocols at the relay; (3) a cooperative NOMA system with HD and amplification amplify-and-forward (AF) with fixed-gain (FG) protocols at the relay; (4) a cooperative NOMA system with HD and amplification AF with variable-gain (VG) protocols at the relay; (5) a cooperative NOMA system with FD and amplification AF with FG protocols at the relay; (6) a cooperative NOMA system with FD and amplification AF with VG protocols at the relay. Based on the results of analysis and simulations, the study determined the transmission scenario for best system performance. This paper also proposed a mechanism to switch between HD/FD and DF/AF with FG/VG protocols in order to improve the quality of service (QoS) for users with a weak conditional channel. This mechanism can be deployed in future 5G wireless network sensors. Finally, EE was also assessed in relation to future green-wireless networks (G-WNs).


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Tan N. Nguyen ◽  
Tran Hoang Quang Minh ◽  
Phuong T. Tran ◽  
Miroslav Voznak

We investigate the system performance of a two-way amplify-and-forward (AF) energy harvesting relay network over the Rician fading environment. For details, the delay-limited (DL) and delay-tolerant (DT) transmission modes are proposed and investigated when both energy and information are transferred between the source node and the destination node via a relay node. In the first stage, the analytical expressions of the achievable throughput, ergodic capacity, the outage probability, and symbol error ratio (SER) were proposed, analyzed, and demonstrated. After that, the closed-form expressions for the system performance are studied in connection with all system parameters. Moreover, the analytical results are also demonstrated by Monte Carlo simulation in comparison with the closed-form expressions. Finally, the research results show that the analytical and the simulation results agree well with each other in all system parameters.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 285
Author(s):  
Anh-Nhat Nguyen ◽  
Van Nhan Vo ◽  
Chakchai So-In ◽  
Dac-Binh Ha

This paper investigates system performance in the Internet of Things (IoT) with an energy harvesting (EH) unmanned aerial vehicle (UAV)-enabled relay under Nakagami-m fading, where the time switching (TS) and adaptive power splitting (APS) protocols are applied for the UAV. Our proposed system model consists of a base station (BS), two IoT device (ID) clusters (i.e., a far cluster and a near cluster), and a multiantenna UAV-enabled relay (UR). We adopt a UR-aided TS and APS (U-TSAPS) protocol, in which the UR can dynamically optimize the respective power splitting ratio (PSR) according to the channel conditions. To improve the throughput, the nonorthogonal multiple access (NOMA) technique is applied in the transmission of both hops (i.e., from the BS to the UR and from the UR to the ID clusters). The U-TSAPS protocol is divided into two phases. In the first phase, the BS transmits a signal to the UR. The UR then splits the received signal into two streams for information processing and EH using the APS scheme. In the second phase, the selected antenna of the UR forwards the received signal to the best far ID (BFID) in the far cluster and the best near ID (BNID) in the near cluster using the decode-and-forward (DF) or amplify-and-forward (AF) NOMA scheme. We derive closed-form expressions for the outage probabilities (OPs) at the BFID and BNID with the APS ratio under imperfect channel state information (ICSI) to evaluate the system performance. Based on these derivations, the throughputs of the considered system are also evaluated. Moreover, we propose an algorithm for determining the nearly optimal EH time for the system to minimize the OP. In addition, Monte Carlo simulation results are presented to confirm the accuracy of our analysis based on simulations of the system performance under various system parameters, such as the EH time, the height and position of the UR, the number of UR antennas, and the number of IDs in each cluster.


Author(s):  
Phu Tran Tin ◽  
Minh Tran ◽  
Tan N. Nguyen ◽  
Thanh-Long Nguyen

<p><span>In this paper, we investigate system performance in term of throughput and ergodic capacity of the hybrid time-power switching protocol of energy harvesting bidirectional relaying network. In the first stage, the analytical expression of the system throughput and ergodic capacity of the model system is proposed and derived. In this analysis, both delay-limited and delay-tolerant transmission modes are presented and considered. After that, the effect of various system parameters on the proposed system is investigated and demonstrated by Monte-Carlo simulation. Finally, the results show that the analytical mathematical and simulated results match for all possible parameter values for both schemes.</span></p>


Author(s):  
Phu Tran Tin ◽  
Minh Tran ◽  
Tan N. Nguyen ◽  
Thanh-Long Nguyen

<span>In this paper, the system performance in term of the ergodic capacity of a half-duplex decode-and-forward relaying network over Rician Fading Channel is investigated. The power splitting protocol is proposed for the system model. For this purpose, the analytical mathematical expressions of the ergodic capacity in cases of maximize and no-maximize ergodic capacity are derived and discussed. Furthermore, the effect of various system parameters on the system performance is rigorously studied. Finally, the analytical results are also demonstrated by Monte-Carlo simulation in comparison with the analytical expressions. The research results show that the analytical mathematical and simulated results match for all possible parameter values for both schemes. </span>


Sign in / Sign up

Export Citation Format

Share Document