scholarly journals Half-Duplex Energy Harvesting Relay Network over Different Fading Environment: System Performance with Effect of Hardware Impairment

2019 ◽  
Vol 9 (11) ◽  
pp. 2283 ◽  
Author(s):  
Duy-Hung Ha ◽  
Si Thien Chau Dong ◽  
Tan N. Nguyen ◽  
Tran Thanh Trang ◽  
Miroslav Voznak

In this paper, we introduce a half-duplex (HD) energy harvesting (EH) relay network over the different fading environment with the effect of hardware impairment (HI). The model system was investigated with the amplify-and-forward (AF) and the power splitting (PS) protocols. The system performance analysis in term of the outage probability (OP), achievable throughput (AT), and bit error rate (BER) were demonstrated with the closed-form expressions. In addition, the power splitting (PS) factor was investigated. We verified the analytical analysis by Monte Carlo simulation with all primary parameters. From the results, we can state that the analytical and simulation results match well with each other.

Author(s):  
Le Anh Vu ◽  
Minh Tran ◽  
Van-Duc Phan ◽  
Hoang-Nam Nguyen ◽  
Thanh-Long Nguyen

<span>In this research, the system performance of the half-duplex two-way relay network under hardware impairment condition is presented and investigated. In this system model, the time switching protocol and amplify-and-forward (AF)-based are considered. First, of all, the analytical expressions of the outage probability, and achievable throughput with the exact closed form and asymptotic form were proposed and derived. Furthermore, the research results are derived and convinced by Monte-Carlo calculation. The numerical results demonstrated and convinced the analytical and the simulation results are agreed for all possible system parameters.</span>


Author(s):  
Tan N. Nguyen ◽  
Minh Tran ◽  
Van-Duc Phan ◽  
Hoang-Nam Nguyen ◽  
Thanh-Long Nguyen

<p>In this work, the half-duplex (HF) power beacon-assisted (PB) energy harvesting (EH) relaying network, which consists of a source (S), Relay (R), destination (D) and a power beacon (PB) are introduced and investigated. Firstly, the analytical expressions of the system performance in term of outage probability (OP) and the system throughput (ST) are analyzed and derived in both amplify-and-forward (AF) and decode-and-forward (DF) modes. After that, we verify the correctness of the analytical analysis by using Monte-Carlo simulation in connection with the primary system parameters. From the numerical results, we can see that all the analytical and the simulation results are matched well with each other.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Tianci Wang ◽  
Guangyue Lu ◽  
Yinghui Ye ◽  
Yuan Ren

This paper investigates an energy-constrained two-way multiplicative amplify-and-forward (AF) relay network, where a practical nonlinear energy harvesting (NLEH) model is equipped at the relay to realize simultaneous wireless information and power transfer (SWIPT). We focus on the design of dynamic power splitting (DPS) strategy, in which the PS ratio is able to adjust itself according to the instantaneous channel state information (CSI). Specifically, we first formulate an optimization problem to maximize the outage throughput, subject to the NLEH. Since this formulated problem is nonconvex and difficult to solve, we further transfer it into an equivalent problem and develop a Dinkelbach iterative method to obtain the corresponding solution. Numerical results are given to verify the quick convergence of the proposed iterative method and show the superior outage throughput of the designed DPS strategy by comparing with two peer strategies designed for the linear energy harvesting (LEH) model.


2018 ◽  
Vol 2 (1) ◽  
pp. 18
Author(s):  
Miroslav Voznak ◽  
Hoang Quang Minh Tran ◽  
N. Tan Nguyen

In recent years, harvesting energy from radio frequency (RF) signals has drawn significant research interest as a promising solution to solve the energy problem. In this paper, we analyze the effect of the interference noise on the wireless energy harvesting performance of a decode-and-forward (DF) relaying network. In this analysis, the energy and information are transferred from the source to the relay nodes in the delay-limited transmission and Delay-tolerant transmission modes by two methods: i) time switching protocol and ii) power splitting protocol. Firstly, due to the constraint of the wireless energy harvesting at the relay node, the analytical mathematical expressions of the achievable throughput, outage probability and ergodic capacity of both schemes were proposed and demonstrated. After that, the effect of various system parameters on the system performance is rigorously studied with closed-form expressions for system throughput, outage probability, and ergodic capacity. Finally, the analytical results are also demonstrated by Monte-Carlo simulation. The results show that the analytical mathematical and simulated results agree with each other.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Tan N. Nguyen ◽  
Tran Hoang Quang Minh ◽  
Phuong T. Tran ◽  
Miroslav Voznak

We investigate the system performance of a two-way amplify-and-forward (AF) energy harvesting relay network over the Rician fading environment. For details, the delay-limited (DL) and delay-tolerant (DT) transmission modes are proposed and investigated when both energy and information are transferred between the source node and the destination node via a relay node. In the first stage, the analytical expressions of the achievable throughput, ergodic capacity, the outage probability, and symbol error ratio (SER) were proposed, analyzed, and demonstrated. After that, the closed-form expressions for the system performance are studied in connection with all system parameters. Moreover, the analytical results are also demonstrated by Monte Carlo simulation in comparison with the closed-form expressions. Finally, the research results show that the analytical and the simulation results agree well with each other in all system parameters.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 285
Author(s):  
Anh-Nhat Nguyen ◽  
Van Nhan Vo ◽  
Chakchai So-In ◽  
Dac-Binh Ha

This paper investigates system performance in the Internet of Things (IoT) with an energy harvesting (EH) unmanned aerial vehicle (UAV)-enabled relay under Nakagami-m fading, where the time switching (TS) and adaptive power splitting (APS) protocols are applied for the UAV. Our proposed system model consists of a base station (BS), two IoT device (ID) clusters (i.e., a far cluster and a near cluster), and a multiantenna UAV-enabled relay (UR). We adopt a UR-aided TS and APS (U-TSAPS) protocol, in which the UR can dynamically optimize the respective power splitting ratio (PSR) according to the channel conditions. To improve the throughput, the nonorthogonal multiple access (NOMA) technique is applied in the transmission of both hops (i.e., from the BS to the UR and from the UR to the ID clusters). The U-TSAPS protocol is divided into two phases. In the first phase, the BS transmits a signal to the UR. The UR then splits the received signal into two streams for information processing and EH using the APS scheme. In the second phase, the selected antenna of the UR forwards the received signal to the best far ID (BFID) in the far cluster and the best near ID (BNID) in the near cluster using the decode-and-forward (DF) or amplify-and-forward (AF) NOMA scheme. We derive closed-form expressions for the outage probabilities (OPs) at the BFID and BNID with the APS ratio under imperfect channel state information (ICSI) to evaluate the system performance. Based on these derivations, the throughputs of the considered system are also evaluated. Moreover, we propose an algorithm for determining the nearly optimal EH time for the system to minimize the OP. In addition, Monte Carlo simulation results are presented to confirm the accuracy of our analysis based on simulations of the system performance under various system parameters, such as the EH time, the height and position of the UR, the number of UR antennas, and the number of IDs in each cluster.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3839 ◽  
Author(s):  
Tan Nguyen ◽  
Phu Tran Tin ◽  
Duy Ha ◽  
Miroslav Voznak ◽  
Phuong Tran ◽  
...  

In this research, we investigate a hybrid time-switching relay (TSR)–power-splitting relay (PSR) alternate energy harvesting (EH) relaying network over the Rician fading channels. For this purpose, the amplify-and-forward (AF) mode is considered for the alternative hybrid time TSR–PSR. The system model consists of one source, one destination and two alternative relays for signal transmission from the source to the destination. In the first step, the exact and asymptotic expressions of the outage probability and the symbol errors ratio (SER) are derived. Then, the influence of all system parameters on the system performance is investigated, and the Monte Carlo simulation verifies all results. Finally, the system performances of TSR–PSR, TSR, and PSR cases are compared in connection with all system parameters.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Nabila Sehito ◽  
Shouyi Yang ◽  
Esraa Mousa Ali ◽  
Muhammad Abbas Khan ◽  
Raja Sohail Ahmed Larik ◽  
...  

In this article, we investigated the secrecy performance of a three-hop relay network system with Power Splitting (PS) and Energy Harvesting (EH). In the presence of one eavesdropper, a signal is transferred from source to destination with the help of a relay. The source signal transmits in full-duplex (FD) mood, jamming the relay transfer signals to the destination. The relay and source employ Time Switching (TS) and Energy Harvesting (EH) techniques to obtain the power from the power beacon. In this study, we compared the Secrecy Rate of two Cooperative Schemes, Amplify and Forward (AF) and Decode and Forward (DF), for both designed systems with the established EH and PS system. The Secrecy Rate was improved by 50.5% in the AF scheme and by 44.2% in the DF scheme between the relay and eavesdropper at 40 m apart for the proposed system in EH and PS. This simulation was performed using the Monto Carlo method in MATLAB.


Author(s):  
Dinh-Thuan Do

In this paper, we consider one-way  relay with energy harvesting system based on power beacon (PB), in which the relay node harvests transmitted power from the PB station to forward signals to destination. We also analyse the relay network model with amplify-and-forward (AF) protocol for information cooperation and Power Splitting-based Relaying (PSR) protocol for power transfer. In particular, the outage probability and optimal energy harvesting (EH) power splitting fraction of novel scheme in are presented. We obtain analytical closed-form expression of  optimal energy harvesting (EH) power splitting fraction to minimize the outage probability of system. Using numerical and analytical simulations, the performances of different cases are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document