scholarly journals Miniaturization of Broadband Wilkinson Power Dividers

Author(s):  
Nadera Najib ◽  
Kok Yeow You ◽  
Chia Yew Lee ◽  
Mohamad Ngasri Dimon ◽  
Nor Hisham Khamis

This paper proposed three modified Wilkinson power dividers in order to achieve a size reduction and a wide bandwidth. The first structure presented the power divider using compact folded step impedance transmission lines rather than the uniform microstrip line design for operating center frequency of 3 GHz. The second structure showed the power divider with delta-stub for 2.4 GHz. Finally, the third modified structure introduced the two-section Wilkinson power divider using series-delta stub for center frequency of 2.4 GHz as well. The study managed to get an overall dimension of 15 mm × 9.5 mm for the first proposed design achieving a reduction of 75.6 % and fractional bandwidth of 133 %. For the second proposed structure, the size was 15 mm × 15 mm with a reduction of 56 % and fractional bandwidth of 56 %.  While the third design size was 17 mm × 15 mm with a reduction of 63.6 % and the structure achieved a broadband bandwidth with fractional bandwidth of 220 %.  The proposed power dividers used RT/duroid 5880 substrate with a thickness of 0.38 mm. Simulation and measurement results indicated that the modified power dividers showed equal power division, good phase balance, high isolation between output ports, and good return loss better than -12 dB covering the operating frequency range<strong>.</strong>

2015 ◽  
Vol 24 (08) ◽  
pp. 1550127
Author(s):  
Huan-Zhu Wang ◽  
Jia-Lin Li ◽  
Jian-Peng Wang ◽  
Wei Shao ◽  
Xue-Song Yang

Microstrip Wilkinson power dividers with harmonic suppression and size reduction are investigated. It is found that by loading reactive components at the middle of high impedance transmission lines (TLs), both size reduction and harmonic suppression can be achieved. Analyses and designs of such a kind of power divider are formulated in this paper. To demonstrate the design methodology, two power dividers centered at 1.8 GHz are optimally designed and confirmed by experiments. As compared with conventional Wilkinson power divider, the proposed power divider exhibits 55.6% size reduction, and high suppressions are achieved for 2nd and 3rd harmonic components. Both simulations and measurements are presented with good agreement.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arun Kumar Gande ◽  
Souma Guha Mallick ◽  
Bijit Biswas ◽  
Sayan Chatterjee ◽  
Dipak Ranjan Poddar

Purpose This paper aims to present a compact, broadband substrate integrated waveguide (SIW) three-way power divider with improved isolation based on six-port SIW coupler. Design/methodology/approach The power coupling among the three output ports occurs due to short openings in the narrow walls of the central SIW channel. Performance improvement in the isolation and return loss among ports is achieved using matching posts placed at the input and output ends of the coupling region. This enhances the coupling between TE10 and TE30 modes. The input matching ports enhance the return loss, whereas the isolation is alleviated by both the input and output matching posts. The bandwidth enhancement is achieved by optimizing the outer SIW channel widths. Findings The measured fractional bandwidth of 27.3% with over 15 dB of isolation and return loss is achieved. The coupling length is 1.55 λg at the centre frequency. The power divider achieves better than 15 dB isolation between non-adjacent output ports. The measured reflection and isolation coefficients are in close agreement with simulated results over 8.2 to 10.8 GHz. Practical implications Isolation between the adjacent and non-adjacent ports is an important parameter as the reflections from these ports will interfere with signals from other ports reducing the fractional bandwidth of the power divider and affecting the overall performance of the transmitters and receivers. Originality/value The authors present the enhancement of isolation between the output non-adjacent ports by optimizing the SIW channel width and matching post in the coupling region to reduce the reflected signals from non-adjacent ports entering into other ports. To the author’s knowledge, this is the only SIW three-way power divider paper showing non-adjacent port isolation among six-port couplers based three-way power dividers.


2013 ◽  
Vol 437 ◽  
pp. 1066-1072 ◽  
Author(s):  
Wei Min Wang ◽  
Yuan An Liu

A novel coupled-line circuit configuration is proposed to design small-size dual-band Wilkinson power dividers. This proposed power divider consists of three sections of coupled lines and two isolation resistors. The analytical design theory is given and the electrical parameters analysis is provided. Six numerical examples are presented to demonstrate the flexible dual-band applications. To avoid a negative isolation resistor, a practical power divider operating at 1GHz and 2.2GHz with two positive-value resistors is designed. The calculated and full-wave simulated results verify our proposed idea. Keywords: Coupled-line, dual-band, power divider.


2011 ◽  
Vol 25 (16) ◽  
pp. 2201-2211 ◽  
Author(s):  
W. Huang ◽  
C.-J. Liu ◽  
Q. Chen ◽  
Y.-N. Li ◽  
X. Chen ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1148
Author(s):  
Zhaolong Qiao ◽  
Zhengpeng Wang ◽  
Jungang Miao

A high channel consistency subarray of plane-wave generators (PWG) is described for fifth-generation (5G) base station (BS) over-the-air (OTA) testing. Firstly, the variation of the near field radiation characteristics of the subarray based on the feed amplitude and phase errors of the traditional power divider network is analyzed. The recommended amplitude and phase errors between channels are given. After that, a novel subarray which combines four pyramidal horn antennas and a compact 1:4 waveguide power divider is designed. The optimized perfectly symmetrical zigzag waveguide transmission lines are used to realize consistent power allocation among antenna elements. No intermediate pins are employed, which avoids the significant deterioration of channel consistency caused by assembly errors. The size of the subarray is 4.89 λ0 × 4.97 λ0 × 1.23 λ0 (λ0 is the working wavelength corresponding to the subarray center frequency at 3.5 GHz). The VSWR < 1.5 impedance bandwidth covers 3.4 GHz to 3.6 GHz. The amplitude difference between the four elements of the subarray is less than 0.5 dB, and the phase difference is less than 3°. The simulated and measured results agree well in this design.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6330
Author(s):  
Asif I. Omi ◽  
Rakibul Islam ◽  
Mohammad A. Maktoomi ◽  
Christine Zakzewski ◽  
Praveen Sekhar

In this paper, a novel analytical design technique is presented to implement a coupled-line wideband Wilkinson power divider (WPD). The configuration of the WPD is comprised of three distinct coupled-line and three isolation resistors. A comprehensive theoretical analysis is conducted to arrive at a set of completely new and rigorous design equations utilizing the dual-band behavior of commensurate transmission lines. Further, the corresponding S-parameters equations are also derived, which determine the wideband capability of the proposed WPD. To validate the proposed design concept, a prototype working at the resonance frequencies of 0.9 GHz and 1.8 GHz is designed and fabricated using 60 mils thick Rogers’ RO4003C substrate. The measured result of the fabricated prototype exhibits an excellent input return loss > 16.4 dB, output return loss > 15 dB, insertion loss < 3.30 dB and a remarkable isolation > 22 dB within the band and with a 15 dB and 10 dB references provide a fractional bandwidth of 110% and 141%, respectively.


2014 ◽  
Vol 23 (07) ◽  
pp. 1450096 ◽  
Author(s):  
HUAN-ZHU WANG ◽  
JIA-LIN LI ◽  
WEI SHAO ◽  
JIAN-PENG WANG ◽  
XUE-SONG YANG ◽  
...  

To solve the problem that it is difficult to install isolation resistors across each output port, a new five-way microstrip Wilkinson power divider with double-layer topology is developed. The isolation resistors are placed on the second substrate by using half-wavelength microstrip transmission lines with the introduction of Archimedean spirals to reduce the circuit size. To demonstrate the design method, a five-way equal power divider is designed; its size is optimized at the center frequency of 2.45 GHz. The fabricated sample has been tested. Measured results are in good agreement with simulations.


Sign in / Sign up

Export Citation Format

Share Document