scholarly journals Improved newton-raphson with schur complement methods for load flow analysis

Author(s):  
Lea Tien Tay ◽  
William Ong Chew Fen ◽  
Lilik Jamilatul Awalin

<p>The determination of power and voltage in the power load flow for the purpose of design and operation of the power system is very crucial in the assessment of actual or predicted generation and load conditions. The load flow studies are of the utmost importance and the analysis has been carried out by computer programming to obtain accurate results within a very short period through a simple and convenient way. In this paper, Newton-Raphson method which is the most common, widely-used and reliable algorithm of load flow analysis is further revised and modified to improve the speed and the simplicity of the algorithm. There are 4 Newton-Raphson algorithms carried out, namely Newton-Raphson, Newton-Raphson constant Jacobian, Newton-Raphson Schur Complement and Newton-Raphson Schur Complement constant Jacobian. All the methods are implemented on IEEE 14-, 30-, 57- and 118-bus system for comparative analysis using MATLAB programming. The simulation results are then compared for assessment using measurement parameter of computation time and convergence rate. Newton-Raphson Schur Complement constant Jacobian requires the shortest computational time.</p>

SainETIn ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 59-68
Author(s):  
Rido Rahmadani

The chlor-alkali process is an electrolysis process which plays an important role in the chemical industry such as the pulp industry. The process produces a product in the form of H2 gas, CL2 gas and NaOH (where the source of chloride ion used is NaCl). This electrolysis process requires a dirrect current with a large current  and a low voltage. In this electrolysis process a three phase controlled 12 pulse rectifiers are used which a connected with multi-winding transformers. In the rectifiers process there will be harmonic distortion on the source side of the transformer which can reduce the power quality of the system. To overcome the harmonic problems that occur in the system, an installation analysis of the equipment in the form of a passive single tuned  filter is aimed at reducing harmonic distortion of current and voltage and increasing the power factor (cos φ). From the result of harmonic analysis using ETAP software, after the installation of harmonic filters orde 11, 13 and 23, the harmonic current value (THDI) and harmonic voltage (THDV) has decreased, namely, before the filter installation, THDI value is 6,5% whereas after installation of filters, THDI value becomes 0,98%, thus there is a THDI decrease of 5,52%. Furthermore, for the voltage harmonic value (THDV) before filter installation is 1,48% while after filtering, THDV value becomes 0,26%, thus there is a THDV decrease of 1,22%. From the results of the simulation of the flow of power (load flow analysis), after installation of filters there is an increase in the value of the power factor (cos φ). Namely, before the filter installation, the value of power factor (cos φ) is 0,8 while after the filter installation the value of the power factor (cos φ) to 0,96, thus an increase in the power factor (cos φ) of 16%.   Keywords : harmonic filter, single tuned filter, power factor, transformer rectifier


2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Vishnu Sidaarth Suresh

Load flow studies are carried out in order to find a steady state solution of a power system network. It is done to continuously monitor the system and decide upon future expansion of the system. The parameters of the system monitored are voltage magnitude, voltage angle, active and reactive power. This paper presents techniques used in order to obtain such parameters for a standard IEEE – 30 bus and IEEE-57 bus network and makes a comparison into the differences with regard to computational time and effectiveness of each solver


Load Flow Analysis helps in error free operation of power system and also useful in forecasting the required equipment for expansion of the system. By forecasting the magnitude of the supply required along with effects caused by single or multiple defects in the system and calculating the magnitude of errors, it is very easy to compensate them using various techniques with minimum cost and effort. It means before installation the favorable sites and size of the infrastructure used are determined to maintain the power factor in the system. Here Power Flow Analysis is performed using Newton Raphson method. This method is used in solving power flow studies of various number of busesunder various conditions. In any network there will be undesired rise or drop or dissipation of voltage. Voltage instability decreases the efficiency of the system and also damages the equipment used. Hence voltage instability analysis is performed and magnitude of the instability is calculated and compensated using various techniques. Here we performed Load Flow Analysis on a 5bus system and Voltage Instability Analysis is also performed to the same with necessary outputs.[7]


2022 ◽  
pp. 293-324
Author(s):  
Saad Mohammad Abdullah ◽  
Ashik Ahmed

In this chapter, a hybrid bare bones fireworks algorithm (HBBFWA) is proposed and its application in solving the load flow problem of islanded microgrid is demonstrated. The hybridization is carried out by updating the positions of generated sparks with the help of grasshopper optimization algorithm (GOA) mimicking the swarming behavior of grasshoppers. The purpose of incorporating GOA with bare bones fireworks algorithm (BBFWA) is to enhance the global searching capability of conventional BBFWA for complex optimization problems. The proposed HBBFWA is applied to perform the load flow analysis of a modified IEEE 37-Bus system. The performance of the proposed HBBFWA is compared against the performance of BBFWA in terms of computational time, convergence speed, and number of iterations required for convergence of the load flow problem. Moreover, standard statistical analysis test such as the independent sample t-test is conducted to identify statistically significant differences between the two algorithms.


2005 ◽  
Vol 42 (2) ◽  
pp. 185-202
Author(s):  
Paul Acarnley

The paper describes the development and features of an MS-Excel Workbook (available at www.reseeds.com ), which illustrates four methods of power system load flow analysis. Iterative techniques are represented by the Newton-Raphson and Gauss-Seidel methods. The Workbook also includes two search algorithms: genetic algorithms and simulated annealing.


Sign in / Sign up

Export Citation Format

Share Document