scholarly journals Management maintenance system for remote control based on microcontroller and virtual private server

Author(s):  
Idham Kamil ◽  
Julham Julham ◽  
Muharman Lubis ◽  
Arif Ridho Lubis

<p>Open loop shaped control system is a form of system control without any feedback from the system. One example is the on-off condition which functions to connect and disconnect electricity. The condition to be studied is a dc motor that can be set to live and die via internet server-based client service. The server in this system is a virtual private server (VPS) device that will provide a source of service to the client in the form of a collection of information on dc motor conditions. In addition, its function is also to record the working time of the dc motor. So that a schedule can be determined when the dc motor is maintained. While the client is a control unit consisting of a microcontroller device, an ethernet module enc28j60 and a dc motor. In general the working principle of the system is beginning with the user accessing the desired VPS IP address through a web browser application. From the web browser the user chooses a dc motor to be activated. But before the client has been connected to the VPS regularly (every second), the point is to always get the latest dc motor condition information. Then the microcontroller will set the dc motor in active or off condition. The research method used is research and development. The results obtained from this study are that the amount of bandwidth needed for communication between VPS and microcontrollers via the internet network, when the control unit works is 6.02 kbps, while the response time for dc motor is 3.16 seconds and the response time for dc motor 2 is 3.46 seconds.</p>

2016 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Potnuru Devendra ◽  
Mary K. Alice ◽  
Ch. Sai Babu ◽  
◽  
◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Tae-Hoon Lee ◽  
Gun-Ha Yoon ◽  
Seung-Bok Choi

This paper investigates the deploying time (or response time) of an active hood lift system (AHLS) of a passenger vehicle activated by gunpowder actuator. In this work, this is accomplished by changing principal design parameters of the latch part mechanism of the hood system. After briefly introducing the working principle of the AHLS operated by the gunpowder actuator, the governing equations of the AHLS are formulated for each different deploying motion. Subsequently, using the governing equations, the response time for deploying the hold lift system is determined by changing several geometric distances such as the distance from the rotational center of the pop-up guide to the point of the latch in the axial and vertical directions. Then, a comparison is made of the total response time to completely deploy the hood lift system with the existing conventional AHLS and proposed AHLS. In addition, the workable driving speed of the proposed AHLS is compared with the conventional one by changing the powder volume of the actuator.


Author(s):  
Jozef Kapusta ◽  
Michal Munk ◽  
Dominik Halvoník ◽  
Martin Drlík

If we are talking about user behavior analytics, we have to understand what the main source of valuable information is. One of these sources is definitely a web server. There are multiple places where we can extract the necessary data. The most common ways are to search for these data in access log, error log, custom log files of web server, proxy server log file, web browser log, browser cookies etc. A web server log is in its default form known as a Common Log File (W3C, 1995) and keeps information about IP address; date and time of visit; ac-cessed and referenced resource. There are standardized methodologies which contain several steps leading to extract new knowledge from provided data. Usu-ally, the first step is in each one of them to identify users, users’ sessions, page views, and clickstreams. This process is called pre-processing. Main goal of this stage is to receive unprocessed web server log file as input and after processing outputs meaningful representations which can be used in next phase. In this pa-per, we describe in detail user session identification which can be considered as most important part of data pre-processing. Our paper aims to compare the us-er/session identification using the STT with the identification of user/session us-ing cookies. This comparison was performed concerning the quality of the se-quential rules generated, i.e., a comparison was made regarding generation useful, trivial and inexplicable rules.


2013 ◽  
Vol 438-439 ◽  
pp. 539-542
Author(s):  
Tao Li ◽  
Guo Jing Ren ◽  
Li Feng Qi ◽  
Zhi Min Liu

The relative discussion and research of Micro-Electro-Mechanical System (MEMS) and pressure sensor is carried out in this paper. The working principle of pressure sensor is analyzed, and the cantilever piezoresistive pressure sensor is studied in details. The electricity design of pressure sensor is researched. The open loop Wheatstone-bridge design is adopted in this paper, which adds the freedom of disposing circuit.


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2667-2687
Author(s):  
Zhipeng Xu ◽  
Feipeng Xu ◽  
Dailiang Xie

Piston prover has been widely used as a gas flow standard for its advantages of high accuracy in standard volume, flow stability and repeatability. It has also been employed as the primary gas flow standard in many countries to calibrate meters. However, it is difficult to ensure the uniformity of the inside dimension of the piston, thus the application of conventional piston provers are limited by the maximum calibration flow generated by the piston cylinder volume. In this paper, an improved piston gas prover that mainly consists of two uniform plungers was proposed. Their external diameter constitutes the flow standard. The plungers are driven by servo motor, and the high speed fieldbus EtherCAT has been introduced as the control unit. Hence the two pistons could work collaboratively and operate in three modes: single-piston mode, double-pistons parallel mode, and double-pistons reciprocating mode. Besides generating steady-flow rate, the double-plunger prover can even produce an unsteady-flow rate which could be used to research the dynamic characteristics of flow meters. The structure and working principle of the three modes were carefully introduced. Then experiments for calibrating critical nozzles were carried out, and the results show that the repeatability of the discharge coefficient could be better than 0.06%, and the pressure fluctuation during the process was less than 50 Pa.


2011 ◽  
Vol 52-54 ◽  
pp. 133-138
Author(s):  
Qiang Yin ◽  
Quan Jie Gao ◽  
Xiao Peng Chen ◽  
Jiu Lin Zuo

Compared with the driving system of traditional motors, the advantages of in-wheel motor are described in this article. A kind of drive control unit of in-wheel motor is designed for mobile robot, and its composition, working principle, hardware and software design are described. Experiments show that the control unit can make a good performance to meet the requirements of mobile robot.


Author(s):  
Ayman Y. Yousef ◽  
M. H. Mostafa

<p>In this paper a dual open loop speed control system based on two independent PWM signals of small permanent magnet DC (PMDC) motors using PIC16F877A microcontroller (MCU) has been designed and implemented. The Capture/Compare/PWM (CCP) modules of the MCU are configured as PWM mode and the MCU is programmed using flowcode software package to generate two PWM signals with various duty cycles at the same frequency. A dual H-bridge channel chip SN754410 is used to drive the motors. The variation of PWM duty cycles is related directly to controlling the DC motors terminal voltage which directly proportional with speed of each motor. The complete PWM control system model has been simulated using proteus design suite software package. The development of hardware and software of the dual DC motor speed control system has been explained and clarified.</p>


2012 ◽  
Vol 220-223 ◽  
pp. 1995-1999
Author(s):  
Hong Kun Zhang ◽  
Wen Jun Li

This paper researches on embedded system design based on MC9s12Dp256 microcontroller for vehicle semi-active suspension. The hardware design of suspension control unit (SCU) is introduced. The integrated control strategy which integrates Skyhook and MiniMax strategies is proposed. The hardware-in-the-loop simulation (HILS) test on a two-degree-of-freedom quarter car semi-active suspension system model is carried out. The functions of SUC are verified and the performance of passive suspension and semi-active suspension is compared. The simulation results indicate that the performance of SCU achieves design requirement. In comparison with passive system, the control effect of integrated control strategy can be improved in ride comfort and drive safety.


Sign in / Sign up

Export Citation Format

Share Document