scholarly journals Overlapping issues and solutions in data visualization techniques

Author(s):  
Nur Diana Izzati Husin ◽  
Nur Atiqah Sia Abdullah

<span>The tremendous growth of big data has caused the data visualization process becomes more complex and challenging, and yet, data is expected to be increased from time to time. With these massive and complex data, it is getting harder for the data analyst to interpret or read the data in order to gain new knowledge or information. Therefore, it is important to visualize these data using different techniques. However, there are many remaining issues in data visualization techniques. These issues make the data visualization a big challenge to the data analyst. The most common issue in data visualization techniques is the overlapping issue. This paper reviews the overlapping issues in multidimensional and network data visualization techniques. The existing solutions are also reviewed and discussed in term of advantages and disadvantages. This paper concludes the advantages of the overlapping issues and solutions, before discussing their drawbacks. This paper suggests the color-based approach, relocation, and reduction of data sets to solve the overlapping issues.</span>

Author(s):  
Anna Ursyn ◽  
Edoardo L'Astorina

This chapter discusses some possible ways of how professionals, researchers and users representing various knowledge domains are collecting and visualizing big data sets. First it describes communication through senses as a basis for visualization techniques, computational solutions for enhancing senses and ways of enhancing senses by technology. The next part discusses ideas behind visualization of data sets and ponders what is and what not visualization is. Further discussion relates to data visualization through art as visual solutions of science and mathematics related problems, documentation objects and events, and a testimony to thoughts, knowledge and meaning. Learning and teaching through data visualization is the concluding theme of the chapter. Edoardo L'Astorina provides visual analysis of best practices in visualization: An overlay of Google Maps that showed all the arrival times - in real time - of all the buses in your area based on your location and visual representation of all the Tweets in the world about TfL (Transport for London) tube lines to predict disruptions.


Author(s):  
Abou_el_ela Abdou Hussein

Day by day advanced web technologies have led to tremendous growth amount of daily data generated volumes. This mountain of huge and spread data sets leads to phenomenon that called big data which is a collection of massive, heterogeneous, unstructured, enormous and complex data sets. Big Data life cycle could be represented as, Collecting (capture), storing, distribute, manipulating, interpreting, analyzing, investigate and visualizing big data. Traditional techniques as Relational Database Management System (RDBMS) couldn’t handle big data because it has its own limitations, so Advancement in computing architecture is required to handle both the data storage requisites and the weighty processing needed to analyze huge volumes and variety of data economically. There are many technologies manipulating a big data, one of them is hadoop. Hadoop could be understand as an open source spread data processing that is one of the prominent and well known solutions to overcome handling big data problem. Apache Hadoop was based on Google File System and Map Reduce programming paradigm. Through this paper we dived to search for all big data characteristics starting from first three V's that have been extended during time through researches to be more than fifty six V's and making comparisons between researchers to reach to best representation and the precise clarification of all big data V’s characteristics. We highlight the challenges that face big data processing and how to overcome these challenges using Hadoop and its use in processing big data sets as a solution for resolving various problems in a distributed cloud based environment. This paper mainly focuses on different components of hadoop like Hive, Pig, and Hbase, etc. Also we institutes absolute description of Hadoop Pros and cons and improvements to face hadoop problems by choosing proposed Cost-efficient Scheduler Algorithm for heterogeneous Hadoop system.


2022 ◽  
pp. 67-76
Author(s):  
Dineshkumar Bhagwandas Vaghela

The term big data has come due to rapid generation of data in various organizations. In big data, the big is the buzzword. Here the data are so large and complex that the traditional database applications are not able to process (i.e., they are inadequate to deal with such volume of data). Usually the big data are described by 5Vs (volume, velocity, variety, variability, veracity). The big data can be structured, semi-structured, or unstructured. Big data analytics is the process to uncover hidden patterns, unknown correlations, predict the future values from large and complex data sets. In this chapter, the following topics will be covered more in detail. History of big data and business analytics, big data analytics technologies and tools, and big data analytics uses and challenges.


2018 ◽  
Vol 43 (4) ◽  
pp. 179-190
Author(s):  
Pritha Guha

Executive Summary Very large or complex data sets, which are difficult to process or analyse using traditional data handling techniques, are usually referred to as big data. The idea of big data is characterized by the three ‘v’s which are volume, velocity, and variety ( Liu, McGree, Ge, & Xie, 2015 ) referring respectively to the volume of data, the velocity at which the data are processed and the wide varieties in which big data are available. Every single day, different sectors such as credit risk management, healthcare, media, retail, retail banking, climate prediction, DNA analysis and, sports generate petabytes of data (1 petabyte = 250 bytes). Even basic handling of big data, therefore, poses significant challenges, one of them being organizing the data in such a way that it can give better insights into analysing and decision-making. With the explosion of data in our life, it has become very important to use statistical tools to analyse them.


2020 ◽  
Vol 65 (4) ◽  
pp. 499-514
Author(s):  
D. Daniel Sokol ◽  
Sara Bensley ◽  
Maia Crook

Although antitrust always evolved with the economics of its time, economic analysis was not central to the antitrust enterprise until Continental T.V. Inc. v. GTE Sylvania. In doing so, the Court abandoned the multiple goals of the prior era to embrace a singular economic goal. With a singular goal, antitrust had become revolutionary. How to measure the antitrust revolution has been difficult. In this article, we focus on published case law, which provides a broad set of observations that includes government enforcement actions and private antitrust suits. We use the Caselaw Access Project database and its associated “Historical Trends” tool to track the usage of certain words and phrases in judicial opinions. This article is the first to measure antitrust terms in court cases that combine big data with data visualization techniques to better understand, based on the usage of common antitrust terms, the impact economics has had on decided cases.


10.29007/mq54 ◽  
2019 ◽  
Author(s):  
Sri Teja Bodempudi ◽  
Sharad Sharma ◽  
Atma Sahu ◽  
Rajeev Agrawal

Human-centric situational awareness and visualization are needed for analyzing the big data in an efficient way. One of the challenges is to create an algorithm to analyze the given data without any help of other data analyzing tools. This research effort aims to identify how graphical objects (such as data-shapes) developed in accordance with an analyst's mental model can enhance analyst's situation awareness. Our approach for improved big data visualization is two-fold, focusing on both visualization and interaction. This paper presents the developed data and graph technique based on force- directed model graph in 3D. It is developed using Unity 3D gaming engine. Pilot testing was done with different data sets for checking the efficiency of the system in immersive environment and non-immersive environment. The application is able to handle the data successfully for the given data sets in data visualization. The currently graph can render around 200 to 300 linked nodes in real-time.


Algorithms ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 109 ◽  
Author(s):  
Marian B. Gorzałczany ◽  
Filip Rudziński

In this paper, we briefly present several modifications and generalizations of the concept of self-organizing neural networks—usually referred to as self-organizing maps (SOMs)—to illustrate their advantages in applications that range from high-dimensional data visualization to complex data clustering. Starting from conventional SOMs, Growing SOMs (GSOMs), Growing Grid Networks (GGNs), Incremental Grid Growing (IGG) approach, Growing Neural Gas (GNG) method as well as our two original solutions, i.e., Generalized SOMs with 1-Dimensional Neighborhood (GeSOMs with 1DN also referred to as Dynamic SOMs (DSOMs)) and Generalized SOMs with Tree-Like Structures (GeSOMs with T-LSs) are discussed. They are characterized in terms of (i) the modification mechanisms used, (ii) the range of network modifications introduced, (iii) the structure regularity, and (iv) the data-visualization/data-clustering effectiveness. The performance of particular solutions is illustrated and compared by means of selected data sets. We also show that the proposed original solutions, i.e., GeSOMs with 1DN (DSOMs) and GeSOMS with T-LSs outperform alternative approaches in various complex clustering tasks by providing up to 20 % increase in the clustering accuracy. The contribution of this work is threefold. First, algorithm-oriented original computer-implementations of particular SOM’s generalizations are developed. Second, their detailed simulation results are presented and discussed. Third, the advantages of our earlier-mentioned original solutions are demonstrated.


2022 ◽  
pp. 590-621
Author(s):  
Obinna Chimaobi Okechukwu

In this chapter, a discussion is presented on the latest tools and techniques available for Big Data Visualization. These tools, techniques and methods need to be understood appropriately to analyze Big Data. Big Data is a whole new paradigm where huge sets of data are generated and analyzed based on volume, velocity and variety. Conventional data analysis methods are incapable of processing data of this dimension; hence, it is fundamentally important to be familiar with new tools and techniques capable of processing these datasets. This chapter will illustrate tools available for analysts to process and present Big Data sets in ways that can be used to make appropriate decisions. Some of these tools (e.g., Tableau, RapidMiner, R Studio, etc.) have phenomenal capabilities to visualize processed data in ways traditional tools cannot. The chapter will also aim to explain the differences between these tools and their utilities based on scenarios.


Author(s):  
Miguel Figueres-Esteban ◽  
Peter Hughes ◽  
Coen van Gulijk

In the big data era, large and complex data sets will exceed scientists’ capacity to make sense of them in the traditional way. New approaches in data analysis, supported by computer science, will be necessary to address the problems that emerge with the rise of big data. The analysis of the Close Call database, which is a text-based database for near-miss reporting on the GB railways, provides a test case. The traditional analysis of Close Calls is time consuming and prone to differences in interpretation. This paper investigates the use of visual analytics techniques, based on network text analysis, to conduct data analysis and extract safety knowledge from 500 randomly selected Close Call records relating to worker slips, trips and falls. The results demonstrate a straightforward, yet effective, way to identify hazardous conditions without having to read each report individually. This opens up new ways to perform data analysis in safety science.


2016 ◽  
Vol 35 (10) ◽  
pp. 906-909 ◽  
Author(s):  
Brendon Hall

There has been much excitement recently about big data and the dire need for data scientists who possess the ability to extract meaning from it. Geoscientists, meanwhile, have been doing science with voluminous data for years, without needing to brag about how big it is. But now that large, complex data sets are widely available, there has been a proliferation of tools and techniques for analyzing them. Many free and open-source packages now exist that provide powerful additions to the geoscientist's toolbox, much of which used to be only available in proprietary (and expensive) software platforms.


Sign in / Sign up

Export Citation Format

Share Document