scholarly journals Welding station monitoring system using internet of thing (IOT)

Author(s):  
Ernie Mazuin Mohd Yusof ◽  
Mohd Ismail Yusof ◽  
Rafidah Ali ◽  
Izzat Hilmi Harjimi ◽  
Qasidah Kamarul Bahrin

<span>In oil and gas industry, productivity is very important as the industry involves high cost and can be considered as a large-scale industry. Therefore, time and budget should be kept minimal to avoid loss to the oil and gas company. An example of lack of productivity in the industry is there are many complaints in the oil and gas industry that welders do not perform their job on time. Therefore, this project discussed about a system that can be used to monitor these welding stations. This system is important because it can help supervisors track the welding works from afar or anywhere using internet of things (IoT). To achieve that, a system must consist of hardware and software that are capable of connecting to the internet and monitor the welding works. In this project, the hardware chosen were Arduino Uno for data processing, ESP8266 to connect the microcontroller to the internet, voltage sensor to detect the voltage of the welding machine and a website to show the data taken. Other than that, this system was able to warn the welder of overvoltage of the welding machine. Thus, the system solved the problem of welders not performing their job on time. Supervisors were also able to monitor the job of welders to ensure maximum productivity. Based on the testing done on the system, the prototype was able to work as intended. The welding station monitoring system was able to detect welding usage, measure voltage values of welding and send the data to IoT for monitoring.</span>

2020 ◽  
Vol 7 (9) ◽  
pp. 8654-8673
Author(s):  
Thumeera R. Wanasinghe ◽  
Raymond G. Gosine ◽  
Lesley Anne James ◽  
George K. I. Mann ◽  
Oscar de Silva ◽  
...  

2017 ◽  
Vol 57 (2) ◽  
pp. 469
Author(s):  
Piers Hogarth-Scott

The Internet of Things (IoT) and its forecast 50 billion+ devices will transform industries with an estimated $11+ trillion annual impact to the global economy by 2025. In that same period, Australia has the opportunity to derive up to $116 billion in annual economic value from IoT. The IoT is taking the internet into everything that impacts our lives – from engineering to health, infrastructure, agriculture, mining and more. It is the future of digital connectivity, data accumulation and system efficiencies, but implementation requires sound strategy with a balance between innovation, opportunity and risk. KPMG views IoT as an opportunity for Australian technology companies, industries and entrepreneurs to be leaders in the development and execution of innovative IoT applications. The potential economic, social and environmental benefits from effective IoT solutions are vast. However, IoT developments must focus on security, privacy and trust, to ensure the safety of the IoT ecosystem and its users. The oil and gas industry have in many ways been leaders in the industrial IoT, recognising that innovation in IoT can reduce cost, improve operational efficiency, increase safety and help tap into new markets. However, to unlock the full economic opportunity presented by IoT, interoperability of technologies is essential. This paper explores IoT interoperability with a particular focus on Hypercat BSI PAS212:2016.


2021 ◽  
Author(s):  
Nouf AlJabri ◽  
Nan Shi

Abstract Nanoemulsions (NEs) are kinetically stable emulsions with droplet size on the order of 100 nm. Many unique properties of NEs, such as stability and rheology, have attracted considerable attention in the oil industry. Here, we review applications and studies of NEs for major upstream operations, highlighting useful properties of NEs, synthesis to render these properties, and techniques to characterize them. We identify specific challenges associated with large-scale applications of NEs and directions for future studies. We first summarize useful and unique properties of NEs, mostly arising from the small droplet size. Then, we compare different methods to prepare NEs based on the magnitude of input energy, i.e., low-energy and high-energy methods. In addition, we review techniques to characterize properties of NEs, such as droplet size, volume fraction of the dispersed phase, and viscosity. Furthermore, we discuss specific applications of NEs in four areas of upstream operations, i.e., enhanced oil recovery, drilling/completion, flow assurance, and stimulation. Finally, we identify challenges to economically tailor NEs with desired properties for large-scale upstream applications and propose possible solutions to some of these challenges. NEs are kinetically stable due to their small droplet size (submicron to 100 nm). Within this size range, the rate of major destabilizing mechanisms, such as coalescence, flocculation, and Ostwald ripening, is considerably slowed down. In addition, small droplet size yields large surface-to-volume ratio, optical transparency, high diffusivity, and controllable rheology. Similar to applications in other fields (food industry, pharmaceuticals, cosmetics, etc.), the oil and gas industry can also benefit from these useful properties of NEs. Proposed functions of NEs include delivering chemicals, conditioning wellbore/reservoir conditions, and improve chemical compatibility. Therefore, we envision NEs as a versatile technology that can be applied in a variety of upstream operations. Upstream operations often target a wide range of physical and chemical conditions and are operated at different time scales. More importantly, these operations typically consume a large amount of materials. These facts not only suggest efforts to rationally engineer properties of NEs in upstream applications, but also manifest the importance to economically optimize such efforts for large-scale operations. We summarize studies and applications of NEs in upstream operations in the oil and gas industry. We review useful properties of NEs that benefit upstream applications as well as techniques to synthesize and characterize NEs. More importantly, we identify challenges and opportunities in engineering NEs for large-scale operations in different upstream applications. This work not only focuses on scientific aspects of synthesizing NEs with desired properties but also emphasizes engineering and economic consideration that is important in the oil industry.


The distinctive feature of petroleum businesses is its wide scope. After crude oil or gas extraction, resulting semi-products undergo dozens of transformation stages in supply chains to reach the final customer. Combination of quantity and quality multiplied by external market factors produce price fluctuations that are challenging for world economics. In this regard process management might be carried out to improve supply chain performance and assure the maximum business predictability. However, for such large-scale organizations it requires big effort in operational analysis, process enhancement and process control via information systems which successfully support traditional management in function-oriented organizational structures. This chapter explores the developed engineering matrix that embraces potential methods and tools applicable for oil and gas industry. Additionally, it reveals industrial peculiarities and delivers case studies about Iranian and Hungarian petroleum companies.


2014 ◽  
Vol 32 (4) ◽  
pp. 687-697 ◽  
Author(s):  
Martine B. Hannevik ◽  
Jon Anders Lone ◽  
Roald Bjørklund ◽  
Cato Alexander Bjørkli ◽  
Thomas Hoff

2013 ◽  
Vol 278-280 ◽  
pp. 2012-2015
Author(s):  
Lian Shi Lin ◽  
Qing Hu ◽  
Yu Ping Qui

The Internet of things is a massive electronic equipment with internet interconnection of large scale virtual networks, including RFID, sensor and actuator electronic devices by the internet interconnection. In order to solve internet of things architecture intelligent refrigerator key technologies, The paper had discussed the internet of things architecture intelligent refrigerator definition, characteristic as well as reference architecture, focused on analysis intelligent refrigerator information space definition, information quantification method and mobile platform equipment internet of things key technology main problems and corresponding solution ways.


2019 ◽  
Vol 1196 ◽  
pp. 012006
Author(s):  
Shamsul Bahri Abdul Satar ◽  
Ab Razak Che Hussin ◽  
Yusuf Sahabi Ali ◽  
Samsuryadi

2011 ◽  
Vol 51 (2) ◽  
pp. 736
Author(s):  
Allan Drake-Brockman ◽  
Daniel White

Since the commencement of the Fair Work Act 2009 (Cth) (FW Act) on 1 July 2009, there has been a significant increase in union activity in Australia’s oil and gas industry. Recent case examples concerning the Pluto Project and various other disputes flag the importance of project managing industrial relations to ensure project delivery dates are met. Due to the contract interdependencies on large scale oil and gas projects, industrial action taken by a union in relation to a single sub-contractor can have ripple effects—causing budget blow-outs. Emerging union influence is such a concern that some of Australia’s leading companies operating in the oil and gas industry now identify industrial activity as a key project risk. Furthermore, many Australian leading financial institutions now assess a company’s potential exposure to industrial action as part of their key lending criteria. New innovative industrial relations strategies are now part of the weaponry Australian unions use when representing their members—this includes global union strategies. Moreover, there is already evidence that the FW Act can promote the occurrence of demarcation disputes between unions. This type of industrial activity leads to poor outcomes for employers and can prove to be very costly—especially in a multi-million dollar a day industry. Providing insight into the recent union activities in the industry are the following cases: Heath v Gravity Crane Services Pty Ltd Boskalis Australia Pty Ltd v Maritime Union of Australia CFMEU v Woodside Burrup Pty Ltd Offshore Marine Services Pty Ltd v Maritime Union of Australia There are a number of strategies oil and gas companies and sub-contractors can use to mitigate the effects of union influence in the workplace.


2021 ◽  
Author(s):  
Iraj Ershaghi ◽  
Milad A. Ershaghi ◽  
Fatimah Al-Ruwai

Abstract A serious issue facing many oil and gas companies is the uneasiness among the traditional engineering talents to learn and adapt to the changes brought about by digital transformation. The transformation has been expected as the human being is limited in analyzing problems that are multidimensional and there are difficulties in doing analysis on a large scale. But many companies face human factor issues in preparing the traditional staff to realize the potential of adaptation of AI (Artificial Intelligence) based decision making. As decision-making in oil and gas industry is growing in complexity, acceptance of digital based solutions remains low. One reason can be the lack of adequate interpretability. The data scientist and the end-users should be able to assure that the prediction is based on correct set of assumptions and conform to accepted domain expertise knowledge. A proper set of questions to the experts can include inquiries such as where the information comes from, why certain information is pertinent, what is the relationship of components and also would several experts agree on such an assignment. Among many, one of the main concerns is the trustworthiness of applying AI technologies There are limitations of current continuing education approaches, and we suggest improvements that can help in such transformation. It takes an intersection of human judgment and the power of computer technology to make a step-change in accepting predictions by (ML) machine learning. A deep understanding of the problem, coupled with an awareness of the key data, is always the starting point. The best solution strategy in petroleum engineering adaptation of digital technologies requires effective participation of the domain experts in algorithmic-based preprocessing of data. Application of various digital solutions and technologies can then be tested to select the best solution strategies. For illustration purposes, we examine a few examples where digital technologies have significant potentials. Yet in all, domain expertise and data preprocessing are essential for quality control purposes


Sign in / Sign up

Export Citation Format

Share Document