scholarly journals A two stage battery charger for EV charging applications

Author(s):  
V. Kalyanasundaram ◽  
George S Fernandez ◽  
K. Vijayakumar ◽  
S. Vidyasagar

<p><span>Electric power generation and consumption are indicating an unprecedented change in recent decades. Electrical power industry and transportation sector lie at the core of this development and hence this change. This change is one of the major causes of polluting environmental and global warming. </span><span>So, to decrease the dependency on conventional fuels and greenhouse gas emissions, countries around the globe are actively finding alternative energy resources. It will help to develop clean and green energies to build a sustainable society. Simultaneously, energy utilization in the field of transportation is witnessing a change from fossil fuel to electricity-based fuel. Electrified transportation system is a solution to endorse sustainable energy development and addressing environmental pollution, global warming issues. In this paper, an EV battery charger is designed with a two-stage charging model to achieve good efficiency. The design is simulated by using MATLAB simulation and compared with the existing model. The simulation results show that the proposed model is superior to the traditional model.</span></p>

Author(s):  
R Sekar, Suresh D S and H Naganagouda

In the recent years, using the existing electrical resources to meet the electrical power demand is a challenging one. To address the issues, an alternative energy resources are bringing together to support the existing resources. And it is known that integrating the electrical resources together having lot more technical issues because of their unique features. So bringing them into the common platform and making them together is a wise solution. This paper also an attempt to address one of the issues on the electrical resources integration in the common DC bus structure. In the common bus, various loads with different ratings use to be connected and its recurrent changes such as ON and OFF are not in the control. Due to this the electrical stress in the common bus will increase. In order to minimize the variations a compensation mechanism must be used for avoiding the disturbance during transient, steady-state and fault conditions.


2017 ◽  
Vol 3 (1) ◽  
pp. 11
Author(s):  
Masrufaiyah Masrufaiyah ◽  
Ridho Hantoro ◽  
Gunawan Nugroho ◽  
Totok R Biyanto ◽  
Nur Laila Hamidah

Author(s):  
Abdelhaq.Amar Bensaber ◽  
Mustapha Benghanem ◽  
Mohammed.Amar Bensaber ◽  
Abdelmadjid. Guerouad

<span>Wind turbines components work as nonlinear systems where electromechanical parameters change frequently [1], which makes nonlinear control an interesting solution to prevail good efficiency. SMC has been largely used in electrical power applications because it offers interesting features like robustness to parametric uncertainties and external disturbances, to conquer the biggest drawback of the SMC, adaptation strategy consists on updating the sliding gain and the turbine torque to contribute with some important characteristics such as chatter-free performance, heftiness, robustness and secure power system operation. Matlab tests are introduced and compared.</span>


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Md. Abdul Halim ◽  
Md. Owaleur Rahman ◽  
Mohammad Ibrahim ◽  
Rituparna Kundu ◽  
Biplob Kumar Biswas

Finding sustainable alternative energy resources and treating wastewater are the two most important issues that need to be solved. Microbial fuel cell (MFC) technology has demonstrated a tremendous potential in bioelectricity generation with wastewater treatment. Since wastewater can be used as a source of electrolyte for the MFC, the salient point of this study was to investigate the effect of pH on bioelectricity production using various biomass feed (wastewater and river water) as the anolyte in a dual-chambered MFC. Maximum extents of power density (1459.02 mW·m−2), current density (1288.9 mA·m−2), and voltage (1132 mV) were obtained at pH 8 by using Bhairab river water as a feedstock in the MFC. A substantial extent of chemical oxygen demand (COD) removal (94%) as well as coulombic efficiency (41.7%) was also achieved in the same chamber at pH 8. The overall performance of the MFC, in terms of bioelectricity generation, COD removal, and coulombic efficiency, indicates a plausible utilization of the MFC for wastewater treatment as well as bioelectricity production.


2016 ◽  
Vol 3 (5) ◽  
pp. 3 ◽  
Author(s):  
Ubaid Rasool ◽  
S. Hemalatha

Bioenergy refers to renewable energy produced from biomass. Biomass is any organic material which has stored sunlight in the form of chemical energy. Depleting fossil fuel reserves and growing demand for energy has necessitated the renewed search for alternative energy resources such as plants. Biofuels are an alternative to fossil fuels, which are liquid or gaseous fuels that are derived from biomass sources. Biofuels can be used alone or in combination with other fossil fuels such as petrol. Biofuels are classified into first, second and third generation biofuels. In this review paper, emphasis on the production of biodiesel and bioethanol and how to modify the methods that involve their formation has been carried out. Biodiesel and bioethanol come under first generation biofuels. The first generation biofuels are produced from starch and sugars (bioethanol) and from seed oils (biodiesel). The direct use of vegetable oils and non-edible oils can prove harmful for the diesel engines due to their high viscosity, high density and various other problems that are related to them. So there is a need of converting these sources into biodiesel so that it can be used as a replacement for petroleum based diesel. Another important biofuel, referred to as bioethanol has gained a lot of importance. This review article deals with the conversion of non-edible oils to biodiesel or by modifying the process of transesterification as well as the conversion of sugars to bioethanol by genetic modification of yeast cells and by changing the substrates required for ethanol production by yeast.


Author(s):  
Gennady Kornilov ◽  
◽  
Alexandra Varganova ◽  
Andrey Shemetov ◽  
Olga Gazizova ◽  
...  

The article considers the features of design of industrial power supply system of metallurgical enterprises with on-site electrical power generation. The problems of increasing the efficiency of the main electrical equipment of on-site power plants are formulated. The analysis of development trends in the energy sector of Russian metallurgy is carried out, on the basis of which the importance of industrial on-site power plants is shown. The problem of choosing a generator automatic excitation control system of on-site power plants is con-sidered and possible ways of its solution are given. The task of regime optimization of industrial on-site power plants is considered and original optimization algorithms are presented. Methods of increasing the reliability of power supply of critical equipment and mechanisms involved in the technological process of thermal power plants are proposed. The urgency of the tasks of complex automation and digitalization in the industrial power supply systems is shown, while the special meaning of "digital twins" is noted. Possible prospects for the development of on-site power plants in the context of the decarbonization policy and the transition to alternative energy are considered.


Sign in / Sign up

Export Citation Format

Share Document