scholarly journals Efficient hardware implementation for lightweight mCrypton algorithm using FPGA

Author(s):  
Yasir Amer Abbas ◽  
Ahmed Salah Hameed ◽  
Safa Hazim Alwan ◽  
Maryam Adnan Fadel

<p>The lightweight cryptography is used for low available resources devices such as radio frequency identification (RFID) tags, internet of things (IoTs) and wireless sensor networks. In such case, the lightweight cryptographic algorithms should consider power consumption, design area, speed, and throughput. This paper presents a new architecture of mCrypton lightweight cryptographic algorithm which considers the above-mentioned conditions. Resource-shared structure is used to reduce the area of the new architecture. The proposed architecture is implemented using ISE Xilinx V14,5 and Spartan 3 FPGA platform. The simulation results introduced that the proposed design area is 375 of slices, up to 302 MHz operating frequency, a throughput of 646 Mbps, efficiency of 1.7 Mbps/slice and 0.089 Watt power consumption. Thus, the proposed architecture outperforms similar architectures in terms of area, speed, efficiency and throughput.</p>

2010 ◽  
Vol 164 ◽  
pp. 155-160
Author(s):  
Jouni Tervonen ◽  
Mika Luimula ◽  
Sakari Pieskä ◽  
Tomi Pitkäaho ◽  
Juha Alaspää

In this study we focus on adding wireless intelligence to machines and systems to be used in production applications. The key enabling technologies of piloted mechatronic systems were RFID (Radio-Frequency Identification) and WSAN (Wireless Sensor and Actuator Network). This work is mainly done in a project “Ubiquitous Computing in Maintenance Using Sensors and RFID Tags”. There were several industrial partners in the project. The main goal is to develop solutions that are suitable for industry. Several systems piloted in harsh industrial environments are considered in the paper.


Author(s):  
Jordan Frith

The phrase the Internet of things was originally coined in a 1999 presentation about attaching radio frequency identification (RFID) tags to individual objects. These tags would make the objects machine-readable, uniquely identifiable, and, most importantly, wirelessly communicative with infrastructure. This chapter evaluates RFID as a piece of mobile communicative infrastructure, and it examines two emerging forms: near-field communication (NFC) and Bluetooth low-energy beacons. The chapter shows how NFC and Bluetooth low-energy beacons may soon move some types of RFID to smartphones, in this way evolving the use of RFID in payment and transportation and enabling new practices of post-purchasing behaviors.


2021 ◽  
Vol 13 (7) ◽  
pp. 3684
Author(s):  
Bibiana Bukova ◽  
Jiri Tengler ◽  
Eva Brumercikova

The paper focuses on the environmental burden created by Radio Frequency Identification (RFID) tags in the Slovak Republic (SR). In order to determine the burden there, a model example was created to calculate electronic waste produced by households in the SR by placing RFID tags into municipal waste. The paper presents a legislative regulatory approach towards the environmental impacts from using RFID tags in the SR, as well as an analysis of the environmental burden of using RFID tags throughout the world. The core of the paper is focused on the research conducted in order to calculate the environmental burden of a model household in the SR, where the number of used RFID tags per year was observed; then, the volume of e-waste produced by households of the Slovak Republic per year was determined. In the conclusion, we provide the results of the research presented and discuss including our own proposal for solving the problems connected with the environmental burden of RFID technology.


2013 ◽  
Vol 9 (1) ◽  
pp. 44 ◽  
Author(s):  
Raghav V. Sampangi ◽  
Srinivas Sampalli

Radio Frequency Identification (RFID) is a technology that is very popular due to the simplicity in its technology and high adaptability in a variety of areas. The simplicity in the technology, however, comes with a caveat – RFID tags have severe resource restrictions, which make them vulnerable to a range of security attacks. Such vulnerability often results in the loss of privacy of the tag owner and other attacks on tags. Previous research in RFID security has mainly focused on authenticating entities such as readers / servers, which communicate with the tag. Any security mechanism is only as strong as the encryption keys used. Since RFID communication is wireless, critical messages such as key exchange messages are vulnerable to attacks. Therefore, we present a mutual authentication protocol that relies on independent generation and dynamic updates of encryption keys thereby removing the need for key exchange, which is based on the concept of gene mutation and transfer. We also present an enhanced version of this protocol, which improves the security offered by the first protocol. The novelty of the proposed protocols is in the independent generation, dynamic and continuous updates of encryption keys and the use of the concept of gene mutation / transfer to offer mutual authentication of the communicating entities. The proposed protocols are validated by simulation studies and security analysis.


Author(s):  
M. Zaki Zakaria ◽  
Sofianita Mutalib ◽  
Shuzlina Abdul Rahman ◽  
Shamsul J Elias ◽  
A Zambri Shahuddin

Radio Frequency Identification (RFID) is a one of the fastest growing and most beneficial technologies being adopted by businesses today. One of the important issues is localization of items in a warehouse or business premise and to keep track of the said items, it requires devices which are costly to deploy. This is because many readers need to be placed in a search space. In detecting an object, a reader will only report the signal strength of the tag detected. Once the signal strength report is obtained, the system will compute the coordinates of the RFID tags based on each data grouping. In this paper, algorithms using genetic algorithm, particle swarm, ant colony optimization are proposed to achieve the shortest path for an RFID mobile reader, while covering full search area. In comparison, for path optimization, the mobile reader traverses from one node to the next, moving around encountered obstacles in its path.  The tag reading process is iterative, in which the reader arrives at its start point at the end of each round. Based on the shortest path, an algorithm that computes the location of items in the search area is used. The simulation results show that the ACO method works more effectively and efficiently compare to others when solving shortest path problems.


2008 ◽  
Vol 07 (01) ◽  
pp. 9-14 ◽  
Author(s):  
Selwyn Piramuthu

Radio Frequency Identification (RFID) is promising, as a technique, to enable tracking of essential information about objects as they pass through supply chains. Information thus tracked can be utilised to efficiently operate the supply chain. Effective management of the supply chain translates to huge competitive advantage for the firms involved. Among several issues that impede seamless integration of RFID tags in a supply chain, one of the problems encountered while reading RFID tags is that of collision, which occurs when multiple tags transmit data to the same receiver slot. Data loss due to collision necessitates re-transmission of lost data. We consider this problem when Framed Slotted ALOHA protocol is used. Using machine learning, we adaptively configure the number of slots per frame to reduce the number of collisions while improving throughput.


Author(s):  
Pablo Picazo-Sanchez ◽  
Lara Ortiz-Martin ◽  
Pedro Peris-Lopez ◽  
Julio C. Hernandez-Castro

Radio Frequency Identification (RFID) is a common technology for identifying objects, animals, or people. The main form of barcode-type RFID device is known as an Electronic Product Code (EPC) and the most popular standard for passive RFID tags is Class-1 Generation-2. In this technology, the information transmitted between devices is through the air, therefore adversaries can eavesdrop these messages passed on the insecure radio channel and finally, the security of the system can be compromised. In this chapter, the authors analyze the security of EPC Class-1 Generation-2 standard, showing its security weaknesses and presenting some possible countermeasures.


Sign in / Sign up

Export Citation Format

Share Document