Investigations of Electrostatic and Ionized Fields Analysis for Dual-Electrode System

Author(s):  
Mohamed A. Abouelatta ◽  
Abdelhadi R. Salama ◽  
A. M. Omar ◽  
S. A. Ward

<p>The paper presents the computation and measurement of electric field, in both electrostatic as well as ionized case, for dual electrode system intended for electrostatic applications. The dual electrode system consists of an ionizing and non-ionizing electrode have the same voltage and facing a grounded collecting plate. The charge simulation method (CSM) coupled with genetic algorithms (GAs) and method of characteristic (MOC) is applied to compute the electrostatic field and the ionized field respectively. The influence of dual system parameters such as ionized wire diameter and inter electrode distances on the profile of the electrostatic field on the collecting plate and on the surface of the ionizing wire has been studied. The measurements of the ionized electric field, current-voltage characteristics and ion current density profiles are implemented using the technique of the linear biased probe. An experimental setup is constructed to model the present electrode arrangement. The measurements are carried out for ionized wire of diameter 0.25 and 0.5mm. The computed results are found to be in good agreement with experiments.</p>

Author(s):  
Mohamed Anwar Abouelatta ◽  
Abdelhadi R Salama

<p>This paper concerns the influence of moving an auxiliary limiting cylinder in X-Y directions on the electrostatic field and corona onset voltage of the dual electrode system employed in the electrostatic filtration process resulting in a “Tri-electrode” system. The Tri-electrode system is applied in order to control the field around the ionized wire and on the ground plate. Accurate calculation of the electrostatic field is obtained using the charge simulation method coupled with genetic algorithms. The calculated field values are utilized in computing the corona onset voltage of the ionized electrode. Laboratory measurements of the onset voltage of the ionized electrode are applied. It is found that the limiting cylinder controls the onset voltage of the ionized wire such that the ionized wire may be in ionized or non-ionized state without changing the position of the ionized wire itself. The numerical onset voltage values agreed satisfactorily with those measured experimentally. </p>


2014 ◽  
Vol 672-674 ◽  
pp. 837-841
Author(s):  
Luo Peng ◽  
Li Yong Ming

An improved Charge Simulation Method (CSM) is proposed in this paper. Based on this method, the model of the overall 500kV substation is established, and then the power frequency electric field in substation at the height of the 1.5mabovethegroundis simulated and calculated. Specifically, these on 500kV switch yard in the station are simulated and analysis. The results show that the simulation results are in good agreement with the actual substation measured results, which is proved the correctness of the model and the algorithm. This paper provides an effective method for the rapid analysis of the distribution of power frequency electric field in ultra-high-voltage substation, and also can use the method to study the effects of electric field distribution factors in substation.


2013 ◽  
Vol 441 ◽  
pp. 212-216
Author(s):  
Zhen Guang Liang ◽  
Yu Ze Jiang ◽  
Di Wen Jiang ◽  
Zong Jie Liu

This paper studied influence of three dimension complex ground on electric field under overhead lines. Surface charge method is discussed and planar triangle surface charge elements are used to represent complex ground. Electric field of overhead lines is analyzed by charge simulation method. Finite straight line charges are used to represent conductors. Then electric field of 220kV double circuit overhead lines over a three dimension small hill is calculated and distribution of electric field 1.5m above the ground is analyzed.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 98
Author(s):  
Eugeny Ryndin ◽  
Natalia Andreeva ◽  
Victor Luchinin

The article presents the results of the development and study of a combined circuitry (compact) model of thin metal oxide films based memristive elements, which makes it possible to simulate both bipolar switching processes and multilevel tuning of the memristor conductivity taking into account the statistical variability of parameters for both device-to-device and cycle-to-cycle switching. The equivalent circuit of the memristive element and the equation system of the proposed model are considered. The software implementation of the model in the MATLAB has been made. The results of modeling static current-voltage characteristics and transient processes during bipolar switching and multilevel turning of the conductivity of memristive elements are obtained. A good agreement between the simulation results and the measured current-voltage characteristics of memristors based on TiOx films (30 nm) and bilayer TiO2/Al2O3 structures (60 nm/5 nm) is demonstrated.


This chapter explores the novel nano-metric present-day materials considering power law Profile PLP for redesigning the electrostatic field circulation in the insulation of power cables assessed for scrutinizing charge simulation method (CSM). Moreover, this chapter presents a deep study for using individual and multiple nanodielectrics in power cables manufacturing. An investigation on dielectric strength and partial discharges in the nanodielectrics of power cables is also presented. Furthermore, it offers a detailed theory and effective parameters of partial discharge in nanodielectrics of power cables. Finally, forecast and recommendations are offered for manufacturers to fabricate high quality commercial nano-tech power cables.


Sign in / Sign up

Export Citation Format

Share Document