Nano-Tech Power Cables

This chapter explores the novel nano-metric present-day materials considering power law Profile PLP for redesigning the electrostatic field circulation in the insulation of power cables assessed for scrutinizing charge simulation method (CSM). Moreover, this chapter presents a deep study for using individual and multiple nanodielectrics in power cables manufacturing. An investigation on dielectric strength and partial discharges in the nanodielectrics of power cables is also presented. Furthermore, it offers a detailed theory and effective parameters of partial discharge in nanodielectrics of power cables. Finally, forecast and recommendations are offered for manufacturers to fabricate high quality commercial nano-tech power cables.

Author(s):  
Mohamed Anwar Abouelatta ◽  
Abdelhadi R Salama

<p>This paper concerns the influence of moving an auxiliary limiting cylinder in X-Y directions on the electrostatic field and corona onset voltage of the dual electrode system employed in the electrostatic filtration process resulting in a “Tri-electrode” system. The Tri-electrode system is applied in order to control the field around the ionized wire and on the ground plate. Accurate calculation of the electrostatic field is obtained using the charge simulation method coupled with genetic algorithms. The calculated field values are utilized in computing the corona onset voltage of the ionized electrode. Laboratory measurements of the onset voltage of the ionized electrode are applied. It is found that the limiting cylinder controls the onset voltage of the ionized wire such that the ionized wire may be in ionized or non-ionized state without changing the position of the ionized wire itself. The numerical onset voltage values agreed satisfactorily with those measured experimentally. </p>


Author(s):  
Mohamed A. Abouelatta ◽  
Abdelhadi R. Salama ◽  
A. M. Omar ◽  
S. A. Ward

<p>The paper presents the computation and measurement of electric field, in both electrostatic as well as ionized case, for dual electrode system intended for electrostatic applications. The dual electrode system consists of an ionizing and non-ionizing electrode have the same voltage and facing a grounded collecting plate. The charge simulation method (CSM) coupled with genetic algorithms (GAs) and method of characteristic (MOC) is applied to compute the electrostatic field and the ionized field respectively. The influence of dual system parameters such as ionized wire diameter and inter electrode distances on the profile of the electrostatic field on the collecting plate and on the surface of the ionizing wire has been studied. The measurements of the ionized electric field, current-voltage characteristics and ion current density profiles are implemented using the technique of the linear biased probe. An experimental setup is constructed to model the present electrode arrangement. The measurements are carried out for ionized wire of diameter 0.25 and 0.5mm. The computed results are found to be in good agreement with experiments.</p>


Author(s):  
Karina Weron ◽  
Aleksander Stanislavsky ◽  
Agnieszka Jurlewicz ◽  
Mark M. Meerschaert ◽  
Hans-Peter Scheffler

We present a class of continuous-time random walks (CTRWs), in which random jumps are separated by random waiting times. The novel feature of these CTRWs is that the jumps are clustered. This introduces a coupled effect, with longer waiting times separating larger jump clusters. We show that the CTRW scaling limits are time-changed processes. Their densities solve two different fractional diffusion equations, depending on whether the waiting time is coupled to the preceding jump, or the following one. These fractional diffusion equations can be used to model all types of experimentally observed two power-law relaxation patterns. The parameters of the scaling limit process determine the power-law exponents and loss peak frequencies.


2014 ◽  
Vol 960-961 ◽  
pp. 881-884
Author(s):  
Xiao Guang Xi ◽  
Yu Yan Man ◽  
Chi Zhang ◽  
Ming Lei Wu ◽  
Yan Wei Dong ◽  
...  

In this article, a portable XLPE cable insulation detection device is introduced. Such a device utilizes electromagnetic coupling, UHF electromagnetic wave and acoustic emission to detect partial discharge signals in power cables. By analyzing the partial discharge signals and cable temperatures, the insulation status of XLPE power cables is judged.


2015 ◽  
Vol 2015 ◽  
pp. 1-13
Author(s):  
Yang Liu ◽  
Shuhan Wang ◽  
Peng Dong ◽  
Xiangyang Xu

An electric oil pump (EOP) was integrated into the hydraulic system and an automatic transmission (AT) mechanical oil pump (MOP) was downsized. These processes were performed to combine a start-stop function with the AT and further improve the transmission efficiency. Furthermore, this study established a dynamics model of power loss and leakage of an 8-speed AT; a flow-based control algorithm of the EOP was then developed to realize the start-stop function and support the MOP to meet the flow requirement of the system. Based on a driving simulation method, sizes of the MOP and EOP that ensured optimal fuel economy were selected. A control strategy for the starting clutch was also developed to minimize the starting delay of the test vehicle. A test environment on a rig and prototype vehicle was established to verify the feasibility of the proposed control strategies. The test results indicated that the transmission functioned favorably with the novel two-pump system presented, and a quick and smooth starting performance was achieved when the engine was restarted. The findings in this study are extremely valuable for forward designs of an AT for realizing start-stop function and improving efficiency.


Sign in / Sign up

Export Citation Format

Share Document