scholarly journals Improving the performance of photovoltaic module during partial shading using ANN

Author(s):  
Hadi Fakhir Hashim ◽  
Marwah M. Kareem ◽  
Waleed Khalid Al-Azzawi ◽  
Adnan H. Ali

<span lang="EN-US">Photovoltaic (PV) panels have drawback of having their peak power reduced when clouds or shade are present. Furthermore, it is only available while the sun shine. Nearby structures, plants, bird droppings, and other obstacles shade operating photovoltaic (PV) devices, effectively reducing the incident solar radiation produced by the modules. When these PV panels are exposed to partial shading, their power efficiency is reduced. A neural network with a kind of artificial neural network is used in the suggested hybrid method (ANN). The key focus of this article is to use environmental effects dependent on partial shading to get the maximum performance from a solar system. The suggested hybrid solution is tested in the MATLAB/Simulink working platform using partial shading test cases, and the efficiency is compared to other approaches. Additionally, the best options for the suggested procedure, current, voltage, and power are examined.</span>

2020 ◽  
Vol 57 (6) ◽  
pp. 65-74
Author(s):  
A. Dekhane ◽  
B. Lamri ◽  
N. Benamira

AbstractAlgeria, like any other country, has drawn up its roadmap for the use and promotion of renewable energy sources. Motivated by its commitment to the international community in the fight against global warming and its possession of one of the largest solar fields in the world, a series of laws and institutions have consolidated this ambitious schedule. As known, both the climate and the geological area of Algeria take place among the foremost favoured countries in the field of solar energy. The present paper aims at proposing a simple model of photovoltaic module.The authors used Matlab/Simulink software to predict the current-voltage and power-voltage characteristics according to the influence of several factors, such as solar irradiance, cell temperature and series resistance, on the efficiency of photovoltaic module. The proposed experimental investigation can easily predict the curves (current-voltage and power-voltage) of a PV module, where both of simulation and practical results are identical. A single-crystal-line photovoltaic module was introduced close to Badji-Mokhtar Annaba University, Annaba (Algeria) to show the impact of climatic conditions in this coastal region and partial shading on characteristics.


2013 ◽  
Vol 448-453 ◽  
pp. 1573-1578 ◽  
Author(s):  
Mahamad Abd Kadir ◽  
Saon Sharifah

This paper presents Feedforward Neural network (FFNN) and Elman network controllers to control the maximum power point tracking (MPPT) of photovoltaic (PV). MPPT is a method used to extract the maximum available power from photovoltaic module by designs them to operate efficiently. Thus, cell temperatures and solar irradiances are two critical variable factors to determine PV output powers. The performances of the controller is analyzed in four conditions which are i) constant irradiation and temperature, ii) constant irradiation and variable temperature, iii) constant temperature and variable irradiation and iv) variable temperature and irradiation. The proposed systems are simulated by using MATLAB-SIMULINK. Based on the results, FFNN controller has shown the better performance compare to the Elman network controller during partial shading conditions.


2020 ◽  
Vol 10 (7) ◽  
pp. 2575
Author(s):  
Mariusz T. Sarniak

In this paper, the usefulness of photovoltaic modules built of half cells for partially obstructed photovoltaic (PV) installations was analyzed based on verified simulation studies. The parameters of these modules are similar to the classic, but the internal structure is different. Instead of 60 cells in a typical classic PV module, there are twice as many cells in modules with half cells. A simulation model was built in the Matlab/Simulink engineering calculations package, using the “Solar Cell” component, which is a double-diode PV cell replacement model. The simulation model reflects the internal structure of the PV module from half cells so that the output current is divided into two equal parts inside, and the structure of the module is divided into six sections. Simulation tests were performed for the same parameters that were measured during actual measurements of the current–voltage characteristics of the partially shaded PV module. Verification tests were carried out for the photovoltaic module—JAM60S03-320/PR—using the I–V 400 meter. Four different cases of partial shading of the module were verified and one for the case of no shading, but in conditions different from the standard, given by the manufacturer.


2016 ◽  
Vol 807 ◽  
pp. 155-166 ◽  
Author(s):  
Julia Ling ◽  
Andrew Kurzawski ◽  
Jeremy Templeton

There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.


Author(s):  
Mansour Zegrar ◽  
M’hamed Houari Zerhouni ◽  
Mohamed Tarik Benmessaoud ◽  
Fatima Zohra Zerhouni

In recent years, solar photovoltaic energy is becoming very important in the generation of green electricity. Solar photovoltaic effect directly converts solar radiation into electricity. The output of the photovoltaic module MPV depends on several factors as solar irradiation and cell temperature. A curve tracer is a system used to acquire the PV current-voltage characteristics, in real time, in an efficient manner. The shape of the I-V curve gives useful information about the possible anomalies of a PV device. This paper describes an experimental system developed to measure the current–voltage curve of a MPV under real conditions. The measurement is performed in an automated way. This present paper presents the design, and the construction of I-V simple curve tracer for photovoltaic modules. This device is important for photovoltaic (PV) performance assessment for the measurement, extraction, elaboration and diagnose of entire current-voltage I-V curves for several photovoltaic modules. This system permits to sweep the entire I-V curve, in short time, with different climatic and loads conditions. An experimental test bench is described. This tracer is simple and the experimental results present good performance. Simulation and experimental tests have been carried out. Experimental results presented good performance.


2018 ◽  
Vol 3 (4) ◽  
pp. 190-200
Author(s):  
B. Benabdelkrim ◽  
A. Benatillah

The study of photovoltaic systems (PV) in an efficient manner requires a precise knowledge of the I-V characteristic curves of PV modules. An accurate current-voltage (I-V) model of PV modules is inherently implicit and non-linear and calls for iterative computations to obtain an analytical expression of current as a function of voltage. In this paper, numerical approaches are proposed to forecast the PV modules performance for engineering applications. The proposed approaches were implemented in a Matlab script and the results have been compared with the datasheet values provided by manufacturers in standard test conditions (STC). These approaches permit to extract the unknown parameters and also allow quantifying the effects of module temperature and irradiance on key cells parameters. In this work, a comparative study of the performance characteristics for different modules thin films and solid is analyzed by a single-diode equivalent circuit using four- and five-parameter models and two diode model.


2019 ◽  
Vol 9 ◽  
pp. 59-69
Author(s):  
Alok Dhaundiyal ◽  
Divine Atsu

This paper presents the modeling and simulation of the characteristics and electrical performance of photovoltaic (PV) solar modules. Genetic coding is applied to obtain the optimized values of parameters within the constraint limit using the software MATLAB. A single diode model is proposed, considering the series and shunt resistances, to study the impact of solar irradiance and temperature on the power-voltage (P-V) and current-voltage (I-V) characteristics and predict the output of solar PV modules. The validation of the model under the standard test conditions (STC) and different values of temperature and insolation is performed, as well as an evaluation using experimentally obtained data from outdoor operating PV modules. The obtained results are also subjected to comply with the manufacturer’s data to ensure that the proposed model does not violate the prescribed tolerance range. The range of variation in current and voltage lies in the domain of 8.21 – 8.5 A and 22 – 23 V, respectively; while the predicted solutions for current and voltage vary from 8.28 – 8.68 A and 23.79 – 24.44 V, respectively. The measured experimental power of the PV module estimated to be 148 – 152 W is predicted from the mathematical model and the obtained values of simulated solution are in the domain of 149 – 157 W. The proposed scheme was found to be very effective at determining the influence of input factors on the modules, which is difficult to determine through experimental means.


2015 ◽  
Vol 785 ◽  
pp. 220-224 ◽  
Author(s):  
Jin Chuan Teo ◽  
Rodney H.G. Tan ◽  
V.H. Mok

This paper presents the investigation of partial shading characteristics of mono-crystalline and poly-crystalline photovoltaic module connected in series. Simulink models are developed to assist the investigation to determine the ideality factor for mono-crystalline and poly-crystalline photovoltaic module. Commercially available mono-crystalline and poly-crystalline photovoltaic module are used to extract measurable parameters for the model to study the behaviour of I-V curve. Measurements have been conducted for the investigation includingmono-crystalline only, poly-crystalline only, both unshaded, mono-crystalline shaded and poly-crystalline shaded. This paper contributes to the understanding of partial shading characteristics of different materials presence in photovoltaic string.


Sign in / Sign up

Export Citation Format

Share Document