Modified Look-Up Table for Enhancement of Torque Response in Direct Torque Controlled Induction Machine

Author(s):  
Goh Wee Yen ◽  
Nik Rumzi Nik Idris ◽  
Auzani Jidin ◽  
Tole Sutikno

Basically, the direct torque control (DTC) drive system is operated at light load. At light load, supplying the drive system with rated flux will decrease the efficiency of the system. To maximize the efficiency of drive system, an optimal flux has been applied during steady-state but when a torque is suddenly needed, for example during acceleration, the dynamic of the torque response would be degraded. Therefore, a modification to the voltage vector as well as look-up table has been proposed for the torque response improvement. The proposed voltage vector is generated by adding two adjacent conventional voltage vectors and implemented by using duty ratio. The duty ratio is used to estimate the activation time of each conventional voltage vector in order to produce the proposed voltage vector.

Author(s):  
Hrushikesh V. Bihade

Abstract: Traditional DTC popular because of its simplicity, Robustness, and first torque response. However, it is associated by high THD, large torque ripples and variable switching frequency. Which leads the way to scope of research in traditional DTC drive. thus, to further raise the performance, a method based on minimum voltage vector error is proposed in this dissertation. To cut down the error value between voltage vector imposed on the machine terminal and reference voltage vector, the value of Duty ratio is effectively optimized by propose method. The Optimization process does not increase the complexity of method. The proposed method is simulated in MATLAB environment. Keywords: TDTC, MVE DTC, Torque ripples, voltage-vector, current THD


Author(s):  
Nour Mohamed ◽  
Tedjini Hamza ◽  
Gasbaoui Brahim

<span lang="EN-US">The application of the direct torque control strategy for induction machine drives is mainly characterized by torque and flux distortions caused by voltage vector limitation. The goal of this paper is to perform the conventional DTC induction machine drives and reduce ripples of both flux and torque response. The proposed contribution is based on the control of the DC output side of the rectifier feeding the voltage source inverter by means of PI controller in order to adapt the voltage vector used in typical DTC switching table. Mathematic models are built using MATLAB Simulink and programming environment; the simulation results show the difference between the proposed method and classical DTC.</span>


2019 ◽  
Vol 9 (24) ◽  
pp. 5547
Author(s):  
Hani Albalawi ◽  
Sherif A. Zaid ◽  
Yonis M. Buswig

The simplicity and excellent dynamic performance of Direct Torque Control (DTC) make Induction Motor (IM) drives attractive for many applications that require precise torque control. The traditional version of DTC uses hysteresis controllers. Unfortunately, the nature of these controllers prevents the optimization of the inverter voltage vectors inside the flux hysteresis band. The inverter voltage vector optimization can produce fast torque response of the IM drive. This research proposes two torque optimization methods for IM systems utilizing DTC. Analysis and Matlab simulations for the proposed optimization methods prove that the torque and, consequently, the speed responses, are greatly improved. The performances of the drive system controlled by the proposed optimization methods and the traditional DTC are compared. Conversely, the effects of the parameters on the proposed optimization methods are introduced. The proposed methods greatly improve the torque and speed dynamic performances against the traditional DTC technique. However, one of the proposed optimization methods is more sensitive to IM parameter variations than the other.


2014 ◽  
Vol 541-542 ◽  
pp. 1177-1184
Author(s):  
Hong Xia Yu ◽  
Chuang Li

One of the disadvantages of traditional direct torque control is high torque ripple, A method of reduce torque ripple was proposed basing bus-clamping and duty ratio control technique in this paper. Firstly, the switch vector table with bus-clamping technology was improved by analyzing the role of zero voltage vector to reduce torque ripple in different sector of voltage. Secondly, on the base of combing the improved bus-clamping direct torque control (BCDTC) and discrete duty ratio control (DDRC), a new switch vector table with discrete duty ratio and bus clamping was designed by analyzing the role of zero voltage vector to reduce torque ripple in different speed range. Finally, simulations are performed to verify the proposed strategies.


Sign in / Sign up

Export Citation Format

Share Document