scholarly journals Mathematical Modeling of Photovoltaic Thermal-Thermoelectric (PVT-TE) Air Collector

Author(s):  
Nurul Syakirah Nazri ◽  
Ahmad Fudholi ◽  
Mohd Hafidz Ruslan ◽  
Kamaruzzaman Sopian

Photovoltaic (PV) cell from solar energy is one of the most widely adopted renewable energy source and commercially available system that can be used in various applications. More appealing application of PV arrays used in thermoelectric (TE) device was it can convert solar thermal energy from temperature difference into electric energy to act as power generators. In this study, a theoretical model is developed by using conducting steady state energy analysis of a PVT-TE air collector. The matrix inversion method is used to obtain energy balance equation. The effect of various parameters also investigated. The mass flow rate of range 0.01 kg/s to 0.05 kg/s and solar intensity of 400 W/m2, 600 W/m2 and 800 W/m2 was used to obtain outlet temperature, To in the range about 28.9oC to 43.7oC and PV temperature, Tp about 35.3oC to 60oC.

2006 ◽  
Vol 13 (4-5) ◽  
pp. 459-467 ◽  
Author(s):  
Paulo Eduardo França Padilha ◽  
José Roberto de França Arruda

Vibro-acoustic Transfer Path Analysis (TPA) is a tool to evaluate the contribution of different energy propagation paths between a source and a receiver, linked to each other by a number of connections. TPA is typically used to quantify and rank the relative importance of these paths in a given frequency band, determining the most significant one to the receiver. Basically, two quantities have to be determined for TPA: the operational forces at each transfer path and the Frequency Response Functions (FRF) of these paths. The FRF are obtained either experimentally or analytically, and the influence of the mechanical impedance of the source can be taken into account or not. The operational forces can be directly obtained from measurements using force transducers or indirectly estimated from auxiliary response measurements. Two methods to obtain the operational forces indirectly – the Complex Stiffness Method (CSM) and the Matrix Inversion Method (MIM) – associated with two possible configurations to determine the FRF – including and excluding the source impedance – are presented and discussed in this paper. The effect of weak and strong coupling among the paths is also commented considering the techniques previously presented. The main conclusion is that, with the source removed, CSM gives more accurate results. On the other hand, with the source present, MIM is preferable. In the latter case, CSM should be used only if there is a high impedance mismatch between the source and the receiver. Both methods are not affected by a higher or lower degree of coupling among the transfer paths.


Author(s):  
Ian Adsley ◽  
Richard K. Bull ◽  
Claire Burgess

In a previous paper (1) it was proposed that a simple matrix inversion method could be used to extract source distributions from gamma-count maps, using simple models to calculate the response matrix. The method was tested using numerically generated count maps. In the present work a 100 kBq Co60 source has been placed on a gridded surface and the count rate measured using a NaI scintillation detector. The resulting map of gamma counts was used as input to the matrix inversion procedure and the source position recovered. A multisource array was simulated by superposition of several single-source count maps and the source distribution was again recovered using matrix inversion. The measurements were performed for several detector heights. The effects of uncertainties in source-detector distances on the matrix-inversion method are also examined. The results from this work give confidence in the application of the method to practical applications, such as the segregation of highly active objects amongst fuel-element debris.


Author(s):  
Saprizal Hadisaputra ◽  
Muhammad Zohri ◽  
Bahtiar Bahtiar ◽  
Ahmad Fudholi

The converted Solar energy as electrical and thermal energy was named photovoltaic thermal (PVT). The aim of this study is to the analysis of different length and depth channel effect of photovoltaic thermal with ∇-groove collector by a mathematical model. The matrix inversion was used to analyze the energy balance equation. Simulation results were conducted below the solar intensity of 800 W/m2 and mass flow rate between 0.0069 kg/s and 0.0491 kg/s. Electrical and thermal efficiency was done to assess the effect of different length and channel depth of PVT system with ∇-groove collector. The effect of different length and depth of ∇-groove collector for electrical and thermal performance is caused by changed mass flow rate. The effect Increasing of the mass flow rate of collector increased the thermal and electrical performance of the ∇-groove collector.


2003 ◽  
Vol 10 (02n03) ◽  
pp. 493-497 ◽  
Author(s):  
Y. Y. Sun ◽  
A. T. S. Wee ◽  
A. C. H. Huan

A computational-time-saving scheme for quantitative LEED analysis by the matrix inversion method was studied. Two computational-time-critical parameters, the number of atomic layers (Nl) in the surface slab and the number of ion-core scattering phase shifts (l max ), were tested for energy dependence. Our study on a Cu(210) surface shows that no dependence of Nl on the incident energy exists in the energy range of LEED (50–400 eV), i.e. using energy-dependent Nl is not feasible. The effect of slab thickness reduction on the precision of the Pendry R-factor based best-fit structure search was then studied. This study provides a guide to the selection of surface slab thickness in quantitative LEED analysis by the matrix inversion method. Also, we show that using an energy-dependent l max can save nearly half of the overall computational time for obtaining a set of I–V curves by the matrix inversion method.


2021 ◽  
Vol 12 (1) ◽  
pp. 10-17
Author(s):  
Ahmad Fudholi ◽  
Mariyam Fazleena Musthafa ◽  
Goh Li Jin ◽  
Rudi Darussalam ◽  
Ahmad Rajani ◽  
...  

Solar energy is a renewable energy that can produce heat via a thermal system and generate electricity via a photovoltaic (PV) module. A photovoltaic-thermal (PVT) collector is a system that has a PV module combined with a thermal collector system. The PVT collector is a popular technology for harvesting solar energy. A PVT collector can generate both electrical and thermal energies simultaneously. The study aims to validate the PV and outlet temperature for various mass flow rates and solar radiation. To develop a predictive model, a steady-state energy analysis of a PVT air collector was performed. An energy balance equation was solved using the matrix inversion method. The theoretical model was developed and validated against the experimental results, which have a similar trend and are consistent with the experimental results. On the other hand, the validated model was used to study the performances of PVT air collectors using exergy analysis for the mass flow rate ranging from 0.007 kg/s to 0.07 kg/s and solar radiation ranging from 385 W/m2 to 820 W/m2. The result from the mathematical model was found to be consistent with the experimental data with an accuracy of about 95 %. The average PVT exergy efficiency was found to be 12.7 % and 12.0 % for the theoretical and experimental studies, respectively.


2019 ◽  
Vol 809 ◽  
pp. 480-486
Author(s):  
Rohit George Sebastian ◽  
Christof Obertscheider ◽  
Ewald Fauster ◽  
Ralf Schledjewski

The growing use of composite materials has generated interest in improving and optimising composite manufacturing processes such as Liquid Composite Moulding (LCM). In LCM, dry preforms are placed in a mould and impregnated with the matrix material. The efficiency of filling the moulds can be improved by using Computational Fluid Dynamics (CFD) filling simulations during the design of the mould. As part of an on-going effort to develop a CFD tool for the simulation of LCM processes, a volume averaged energy balance equation has been derived and implemented in a custom OpenFOAM solver. The energy balance is implemented in a custom OpenFOAM solver with and without the pressure terms for comparison with results from RTM experiments. It is found that the pressure terms do not significantly influence the results for LCM processes.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Svetlana N. Khonina ◽  
Sergey G. Volotovsky ◽  
Sergey I. Kharitonov ◽  
Nikolay L. Kazanskiy

An algorithm for solving the steady-state Schrödinger equation for a complex piecewise-constant potential in the presence of theE-field is developed and implemented. The algorithm is based on the consecutive matching of solutions given by the Airy functions at the band boundaries with the matrix rank increasing by no more than two orders, which enables the characteristic solution to be obtained in the convenient form for search of the roots. The algorithm developed allows valid solutions to be obtained for the electric field magnitudes larger than the ground-state energy level, that is, when the perturbation method is not suitable.


Sign in / Sign up

Export Citation Format

Share Document