scholarly journals Design and implementation of automatic painting mobile robot

Author(s):  
Amgad Muneer ◽  
Zhan Dairabayev

Wall painting is a repetitive, stressful, and hazardous process that makes it an ideal automation case. In the automotive industry, painting had been automated but not yet for the construction industry. However, there is a strong need for a mobile robot that can move to paint residential interior walls. In this study, we aim to design and implement an automatic painting mobile robot. The conceptual design of the proposed wall painting robot consisting paint mechanism with a spray gun and ultrasonic sensor. The spray gun is attached to a pulley mechanism that has linear motion. The ultrasonic sensor is used to detect the spray gun when it reached a certain limit. The DC motor rotates clockwise and counterclockwise based on the ultrasonic sensor condition made. The experimental results indicate that the robot was able to paint the walls smoothly vertically, and horizontally. The spraying gun structure's speed is at a tolerable speed of 0.07 m/s, which could be increased, but to provide high-quality painting without any gaps, the current speed was selected as the most suitable, without any harm to the working process.

2010 ◽  
Vol 7 ◽  
pp. 109-117
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov ◽  
B.S. Yudintsev

The article deals with the development of a high-speed sensor system for a mobile robot, used in conjunction with an intelligent method of planning trajectories in conditions of high dynamism of the working space.


2009 ◽  
Vol 6 (3) ◽  
pp. 427-437 ◽  
Author(s):  
Ivan Paunovic ◽  
Darko Todorovic ◽  
Miroslav Bozic ◽  
Goran Djordjevic

The paper discusses a mobile robot localization. Due to cost and simplicity of signal processing, the ultrasonic sensors are very suitable for this application. However, their nonlinear characteristics requires thorough calibrating procedure in order to achieve reliable readings from the obstacles around the robot. Here we describe SMR400 ultrasonic sensor and its calibration procedure. The suggested calibration procedure was tested through a number of experiments, and the results are presented in this paper. .


2021 ◽  
Author(s):  
Sevilay Demirkesen

Lean manufacturing first emerged in the automotive industry. However, low productivity and low efficiency in production are major problems for the majority of industries relying on a heavy workforce. Being one of these, the construction industry suffers from low productivity rates along with inefficient work practices. To prevent those, the industry has shifted its focus from the traditional approach to a more innovative one, which is called Lean construction. Lean construction aims to maximize value while minimizing waste. Therefore, it intends to create safer, smoother, and more efficient processes to eliminate waste. This chapter focuses on Lean construction and highlights the generic Lean tools and techniques practiced in the construction industry indicating its historical journey from Lean manufacturing. The chapter aims to raise awareness towards the efficiency of Lean methods in the construction industry with respect to practices observed in manufacturing.


2012 ◽  
Author(s):  
Ishak Aris ◽  
M. Parvez Iqbal A. K. ◽  
Ramli A. R. ◽  
Shamsuddin S.

Nowadays robots are widely used in many applications such as military, medical application, factories, entertainment, automobile industries etc. However, the application of robot is still not widely implemented in construction industry. In construction industry, robots are designed to increase speed and improve the accuracy of construction field operations. It can also be used to do hazardous and dangerous jobs in construction. For example, currently house painting is done manually. This process can be simplified using a special dedicated robot. It is very difficult and troublesome for human being to work in an upright position, especially for painting, cleaning and screwing in the ceiling for a long time. Painting in an upright position is also very dangerous for the eyes. To overcome this difficulty, a programmable painter robotic system is proposed, designed and developed. This paper describes all the processes that are involved in designing and constructing the proposed painter robot. The system is divided into two main parts namely hardware and software. In hardware part, mechanical design, fabrication, electrical and electronics system are described and in software part, control algorithm is explained. The testing results indicate that the performance of the painter robot is better compared with that of using manual painting technique. Key words: Painting machine, cartesian robotic system, PLC (Programmable logic controller), electro-pneumatic system, motor controlling, construction robotics


Author(s):  
Rajesh Kannan Megalingam ◽  
Vineeth Prithvi Darla ◽  
Chaitanya Sai Kumar Nimmala
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document