scholarly journals Design and Development of a Programmable Painting Robot for Houses and Buildings

2012 ◽  
Author(s):  
Ishak Aris ◽  
M. Parvez Iqbal A. K. ◽  
Ramli A. R. ◽  
Shamsuddin S.

Nowadays robots are widely used in many applications such as military, medical application, factories, entertainment, automobile industries etc. However, the application of robot is still not widely implemented in construction industry. In construction industry, robots are designed to increase speed and improve the accuracy of construction field operations. It can also be used to do hazardous and dangerous jobs in construction. For example, currently house painting is done manually. This process can be simplified using a special dedicated robot. It is very difficult and troublesome for human being to work in an upright position, especially for painting, cleaning and screwing in the ceiling for a long time. Painting in an upright position is also very dangerous for the eyes. To overcome this difficulty, a programmable painter robotic system is proposed, designed and developed. This paper describes all the processes that are involved in designing and constructing the proposed painter robot. The system is divided into two main parts namely hardware and software. In hardware part, mechanical design, fabrication, electrical and electronics system are described and in software part, control algorithm is explained. The testing results indicate that the performance of the painter robot is better compared with that of using manual painting technique. Key words: Painting machine, cartesian robotic system, PLC (Programmable logic controller), electro-pneumatic system, motor controlling, construction robotics

Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 51
Author(s):  
Jozef Živčák ◽  
Michal Kelemen ◽  
Ivan Virgala ◽  
Peter Marcinko ◽  
Peter Tuleja ◽  
...  

COVID-19 was first identified in December 2019 in Wuhan, China. It mainly affects the respiratory system and can lead to the death of the patient. The motivation for this study was the current pandemic situation and general deficiency of emergency mechanical ventilators. The paper presents the development of a mechanical ventilator and its control algorithm. The main feature of the developed mechanical ventilator is AmbuBag compressed by a pneumatic actuator. The control algorithm is based on an adaptive neuro-fuzzy inference system (ANFIS), which integrates both neural networks and fuzzy logic principles. Mechanical design and hardware design are presented in the paper. Subsequently, there is a description of the process of data collecting and training of the fuzzy controller. The paper also presents a simulation model for verification of the designed control approach. The experimental results provide the verification of the designed control system. The novelty of the paper is, on the one hand, an implementation of the ANFIS controller for AmbuBag pressure control, with a description of training process. On other hand, the paper presents a novel design of a mechanical ventilator, with a detailed description of the hardware and control system. The last contribution of the paper lies in the mathematical and experimental description of AmbuBag for ventilation purposes.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2513 ◽  
Author(s):  
Abbas Mohajerani ◽  
Siu-Qun Hui ◽  
Mehdi Mirzababaei ◽  
Arul Arulrajah ◽  
Suksun Horpibulsuk ◽  
...  

Fibres have been used in construction materials for a very long time. Through previous research and investigations, the use of natural and synthetic fibres have shown promising results, as their presence has demonstrated significant benefits in terms of the overall physical and mechanical properties of the composite material. When comparing fibre reinforcement to traditional reinforcement, the ratio of fibre required is significantly less, making fibre reinforcement both energy and economically efficient. More recently, waste fibres have been studied for their potential as reinforcement in construction materials. The build-up of waste materials all around the world is a known issue, as landfill space is limited, and the incineration process requires considerable energy and produces unwanted emissions. The utilisation of waste fibres in construction materials can alleviate these issues and promote environmentally friendly and sustainable solutions that work in the industry. This study reviews the types, properties, and applications of different fibres used in a wide range of materials in the construction industry, including concrete, asphalt concrete, soil, earth materials, blocks and bricks, composites, and other applications.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 73 ◽  
Author(s):  
Kevin Castelli ◽  
Hermes Giberti

This paper aims to describe how additive manufacturing can be useful in enhancing a robotic course, allowing students to focus on all aspects of the multidisciplinary components of this subject. A three-year experience of the course of “robotic system design” is presented to support the validity of the use of this technology in teaching. This course is specifically aimed at Master of Science (MSc) Mechanical Engineering students and therefore requires one to view the subject in all its aspects including those which are not conventionally taken into consideration such as mechanical design, prototyping and the final realization.


2017 ◽  
Vol 726 ◽  
pp. 481-489
Author(s):  
Li Min Wang ◽  
Zhen Ping Sun ◽  
Xu Yang ◽  
Liang Liang Shui ◽  
Hai Jing Yang ◽  
...  

Leakage is a persistent problem in buildings and some other structures, such as dam, bridge and water tower. For a long time, kinds of plugging agents have been developed successfully by modifying organic or inorganic materials. In this paper, the definition, classification and mechanism of plugging agent were introduced and explored in detail. Besides, some application principles and noteworthy matters in engineering were analyzed at well. Furthermore, based on the development of the construction industry in China, some viewpoints of the development prospects of plugging agent were proposed at last.


2017 ◽  
Vol 37 (2) ◽  
pp. 186-199 ◽  
Author(s):  
Zhiqiang Yu ◽  
Qing Shi ◽  
Huaping Wang ◽  
Ning Yu ◽  
Qiang Huang ◽  
...  

Purpose The purpose of this paper is to present state-of-the-art approaches for precise operation of a robotic manipulator on a macro- to micro/nanoscale. Design/methodology/approach This paper first briefly discussed fundamental issues associated with precise operation of a robotic manipulator on a macro- to micro/nanoscale. Second, this paper described and compared the characteristics of basic components (i.e. mechanical parts, actuators, sensors and control algorithm) of the robotic manipulator. Specifically, commonly used mechanisms of the manipulator were classified and analyzed. In addition, intuitive meaning and applications of its actuator explained and compared in details. Moreover, related research studies on general control algorithm and visual control that are used in a robotic manipulator to achieve precise operation have also been discussed. Findings Remarkable achievements in dexterous mechanical design, excellent actuators, accurate perception, optimized control algorithms, etc., have been made in precise operations of a robotic manipulator. Precise operation is critical for dealing with objects which need to be manufactured, modified and assembled. The operational accuracy is directly affected by the performance of mechanical design, actuators, sensors and control algorithms. Therefore, this paper provides a categorization showing the fundamental concepts and applications of these characteristics. Originality/value This paper presents a categorization of the mechanical design, actuators, sensors and control algorithms of robotic manipulators in the macro- to micro/nanofield for precise operation.


Author(s):  
Emin Faruk Kececi

This paper reports a holonomic rescue robot where the robot is driven by screw wheels. The necessity of a such platform is explained and the mechanical design and the actual prototype are presented. In order to design an adaptive control algorithm to ensure the trajectory tracking, the dynamical model is constructed. The stability of the adaptive control algorithm is proven with Lyapunov stability analysis. The necessary electronics to implement the controller algorithm is explained and the conclusions and future work section reports the results of the study as well as the future research directions.


2014 ◽  
Vol 670-671 ◽  
pp. 769-773
Author(s):  
Hong Yao ◽  
Wan Long Han ◽  
Shi Ming Pan ◽  
Zhong Qi Wang

The water droplet erosion protection of the rotor blades has been an important issue for a long time, regardless of the design. The aim of this paper is to present a aerodynamic design method for decrease risk of water droplet erosion in wet steam turbine, as well as to present the comparison between then five diffrent bow stator blades. This paper also presents numerical investigation of three dimensional wet steam flows in a stage. This stage has long transonic blades designed using recent aerodynamic and mechanical design methods. The results show that, the one of the five diffrent bow stator blades decrease rist of water droplet erosion of rotaional blades, and the change of the efficiency is small.


1996 ◽  
Vol 05 (02n03) ◽  
pp. 131-151 ◽  
Author(s):  
WEIMING SHEN ◽  
JEAN-PAUL A. BARTHES

Real world engineering design projects require the cooperation of multidisciplinary design teams using sophisticated and powerful engineering tools. The individuals or the individual groups of the multidisciplinary design teams work in parallel and independently often for quite a long time with different tools located on various sites. In order to ensure the coordination of design activities in the different groups or the cooperation among the different tools, it is necessary to develop an efficient design environment. This paper discusses a distributed architecture for integrating such engineering tools in an open design environment, organized as a population of asynchronous cognitive agents. Before introducing the general architecture and the communication protocol, issues about an agent architecture and inter-agent communications are discussed. A prototype of such an environment with seven independent agents located in several workstations and microcomputers is then presented and demonstrated on an example of a small mechanical design.


2008 ◽  
Vol 57 (11) ◽  
pp. 1799-1804 ◽  
Author(s):  
P. Rouault ◽  
K. Schroeder ◽  
E. Pawlowsky-Reusing ◽  
E. Reimer

In Berlin, Germany, the demand for enhanced protection of the environment and the growing economic pressure have led to an increased application of control concepts within the sewage system. A global control strategy to regulate the pumpage of the combined sewage system to the treatment plant was developed and evaluated in a theoretical study. The objective was to reduce CSO. In this paper an extension of the existing control algorithm by information from online rainfall measurement and radar nowcasting is described. The rainfall information is taken into account by two additive terms describing the predicted volume from rainfall runoff. On the basis of numerical simulation the potential of these two complementary forecast terms in the global control algorithm to further reduce CSO is evaluated. The investigations are based on long-time simulations that are conducted with the dynamic flow routing model InfoWorks for three subcatchments of the Berlin drainage system. The results show that at the current Berlin system a CSO reduction of only 0.8% is possible. The effect of the forecast terms is limited by operational constraints. Limits are set to both, the delivery from each individual pump station and the total pumpage to the treatment plant.


Sign in / Sign up

Export Citation Format

Share Document