Feature Extraction of Turing Tool Wear Based on J-EEMD

Author(s):  
Hongtao Chen ◽  
Pan Fu ◽  
Xiaohui Li
Keyword(s):  
2018 ◽  
Vol 60 (8) ◽  
pp. 443-450 ◽  
Author(s):  
M Murua ◽  
A Suárez ◽  
L N López de Lacalle ◽  
R Santana ◽  
A Wretland

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5984
Author(s):  
Juan Luis Ferrando Chacón ◽  
Telmo Fernández de Barrena ◽  
Ander García ◽  
Mikel Sáez de Buruaga ◽  
Xabier Badiola ◽  
...  

There is an increasing trend in the industry of knowing in real-time the condition of their assets. In particular, tool wear is a critical aspect, which requires real-time monitoring to reduce costs and scrap in machining processes. Traditionally, for the purpose of predicting tool wear conditions in machining, mathematical models have been developed to extract the information from the signal of sensors attached to the machines. To reduce the complexity of developing physical models, where an in-depth knowledge of the system being modelled is required, the current trend is to use machine-learning (ML) models based on data from the tool wear. The acoustic emission (AE) technique has been widely used to capture data from and understand the real-time condition of industrial assets such as cutting tools. However, AE signal interpretation and processing is rather complex. One of the most common features extracted from AE signals to predict the tool wear is the counts parameter, defined as the number of times that the amplitude of the signal exceeds a predefined threshold. A recurrent problem of this feature is to define the adequate threshold to obtain consistent wear prediction. Additionally, AE signal bandwidth is rather wide, and the selection of the optimum frequencies band for feature extraction has been pointed out as critical and complex by many authors. To overcome these problems, this paper proposes a methodology that applies multi-threshold count feature extraction at multiresolution level using wavelet packet transform, which extracts a redundant and non-optimal feature map from the AE signal. Next, recursive feature elimination is performed to reduce and optimize the vast number of predicting features generated in the previous step, and random forests regression provides the estimated tool wear. The methodology presented was tested using data captured when turning 19NiMoCr6 steel under pre-established cutting conditions. The results obtained were compared with several ML algorithms such as k-nearest neighbors, support vector machines, artificial neural networks and decision trees. Experimental results show that the proposed method can reduce the predicted root mean squared error by 36.53%.


2011 ◽  
Vol 474-476 ◽  
pp. 189-194 ◽  
Author(s):  
Lan Shen Guo ◽  
Nai Qiang Dong ◽  
Wei Tian ◽  
Fang Zhong Zhang ◽  
Cai Xiao Li

The paper developed a method of tools AE signal feature extraction based on wavelet packet analysis, we used wavelet packet analysis to decompose acoustic emission signals for different frequency range of the signal components. The will occupy of the main energy of AE signal frequency range is extracted as the recognition feature vector of tool wear. The method has higher accuracy according to experiments.


Author(s):  
J.P. Fallon ◽  
P.J. Gregory ◽  
C.J. Taylor

Quantitative image analysis systems have been used for several years in research and quality control applications in various fields including metallurgy and medicine. The technique has been applied as an extension of subjective microscopy to problems requiring quantitative results and which are amenable to automatic methods of interpretation.Feature extraction. In the most general sense, a feature can be defined as a portion of the image which differs in some consistent way from the background. A feature may be characterized by the density difference between itself and the background, by an edge gradient, or by the spatial frequency content (texture) within its boundaries. The task of feature extraction includes recognition of features and encoding of the associated information for quantitative analysis.Quantitative Analysis. Quantitative analysis is the determination of one or more physical measurements of each feature. These measurements may be straightforward ones such as area, length, or perimeter, or more complex stereological measurements such as convex perimeter or Feret's diameter.


Sign in / Sign up

Export Citation Format

Share Document