scholarly journals Phorbol 12-myristate 13-acetate (PMA) responsive sequence in Gαq promoter during megakaryocytic differentiation

2008 ◽  
Vol 100 (05) ◽  
pp. 821-828 ◽  
Author(s):  
Gauthami Jalagadugula ◽  
Danny N. Dhanasekaran ◽  
A. Koneti Rao

SummaryGαq plays a major role in platelet signal transduction, but little is known regarding its transcriptional regulation. We have reported that Gαq is upregulated during phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic transformation of human erythroleukemia (HEL) cells and regulated by EGR-1, an early growth transcription factor. These studies focused on the initial 238 bp of the 5’ upstream region of the Gαq gene. In the present studies we characterize a minimal region -1042/-1037 bp from ATG in the 5’ upstream of the Gαq promoter that is associated with PMA responsiveness. In luciferase reporter gene studies in HEL cells, Gαq 5’ upstream promoter sequence -1042/-1 showed an about four-fold increased activity in PMA-treated compared to untreated cells. Deletion of 6-nt-1042/-1037 eliminated the difference. Gel-shift studies on Gαq probe (-1042/-1012 bp) revealed binding of EGR-1 with PMA-treated but not untreated nuclear extracts, and this was dependent on the sequence –1042/-1037.Silencing of endogenous EGR-1 inhibited Gαq induction by PMA. MEK/ERK inhibitor U0126 blocked PMA effect on promoter activity of the -1042/-1 construct. In conclusion, EGR-1 binding to sequence –1042/-1037 bp in Gαq promoter mediates the induction of Gαq gene by PMA via the MEK/ERK signaling pathway. These studies provide the first evidence of a PMA-responsive element in Gαq promoter, and new insights into regulation of Gαq gene by EGR-1.

2016 ◽  
Vol 116 (11) ◽  
pp. 931-940 ◽  
Author(s):  
Guangfen Mao ◽  
Jianguo Jin ◽  
Satya P. Kunapuli ◽  
A. Koneti Rao

SummaryPhospholipase C (PLC)-β2 (gene PLCB2) is a critical regulator of platelet responses upon activation. Mechanisms regulating of PLC-β2 expression in platelets/MKs are unknown. Our studies in a patient with platelet PLC-β2 deficiency revealed the PLCB2 coding sequence to be normal and decreased platelet PLC-β2 mRNA, suggesting a defect in transcriptional regulation. PLCB2 5’- upstream region of the patient revealed a heterozygous 13 bp deletion (-1645/-1633 bp) encompassing a consensus sequence for nuclear factor-κB (NF-κB). This was subsequently detected in three of 50 healthy subjects. To understand the mechanisms regulating PLC-β2, we studied the effect of this variation in the PLCB2. Gel-shift studies using nuclear extracts from human erythroleukaemia (HEL) cells or recombinant p65 showed NF-κB binding to oligonucleotide with NF-κB site; in luciferase reporter studies its deletion reduced PLCB2 promoter activity. PLCB2 expression was decreased by siRNA knockdown of NF-κB p65 subunit and increased by p65 overexpression. By immunoblotting platelet PLC-β2 in 17 healthy subjects correlated with p65 (r=0.76, p=0.0005). These studies provide the first evidence that NF-kB regulates MK/platelet PLC-β2 expression. This interaction is important because of the major role of PLC-β2 in platelet activation and of NF-κB in processes, including inflammation and atherosclerosis, where both are intimately involved.Supplementary Material to this article is available online at www.thrombosis-online.com.


2020 ◽  
Vol 20 (6) ◽  
pp. 715-723
Author(s):  
Natarajan Nandakumar ◽  
Pushparathinam Gopinath ◽  
Jacob Gopas ◽  
Kannoth M. Muraleedharan

Background: The authors investigated the NF-κB inhibitory role of three Benzisothiazolone (BIT) derivatives (1, 2 and 3) in Hodgkin’s Lymphoma cells (L428) which constitutively express activated NF-κB. All three compounds showed dose-dependent NF-κB inhibition (78.3, 70.7 and 34.6%) in the luciferase reporter gene assay and were found cytotoxic at IC50 values of 3.3μg/ml, 4.35μg/ml and 13.8μg/ml, respectively by the XTT assay. BIT 1and BIT 2 (but not BIT 3) suppressed both NF-κB subunits p50 and p65 in cytoplasmic and nuclear extracts in a concentration-dependent manner. Furthermore, BIT 1 showed a moderate synergistic effect with the standard chemotherapy drugs etoposide and doxorubicin, whereas BIT 2 and 3 showed a moderate additive effect to antagonistic effect. Cisplatin exhibited an antagonist effect on all the compounds tested under various concentrations, except in the case of 1.56μg/ml of BIT 3 with 0.156μg/ml of cisplatin. The compounds also inhibited the migration of adherent human lung adenocarcinoma cells (A549) in vitro. We conclude that especially BIT 1 and BIT 2 have in vitro anti-inflammatory and anti-cancer activities, which can be further investigated for future potential therapeutic use. Methods: Inspired by the electrophilic sulfur in Nuphar alkaloids, monomeric and dimeric benzisothiazolones were synthesized from dithiodibenzoic acid and their NF-κB inhibitory role was explored. NF-κB inhibition and cytotoxicity of the synthesized derivatives were studied using luciferase reporter gene assay and XTTassay. Immunocytochemistry studies were performed using L428 cells. Cell migration assay was conducted using the A549 cell line. L428 cells were used to conduct combination studies and the results were plotted using CompuSyn software. Results: Benzisothiazolone derivatives exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. Potent compounds showed suppression of both NF-κB subunits p50 and p65 in a concentrationdependent manner, both in cytoplasmic and nuclear extracts. Combination studies suggest that benzisothiazolone derivatives possess a synergistic effect with etoposide and doxorubicin. Furthermore, the compounds also inhibited the migration of A549 cells. Conclusion: Benzisothiazolones bearing one or two electrophilic sulfur atoms as part of the heterocyclic framework exhibited cytotoxicity in Hodgkin’s Lymphoma cells through NF-κB inhibition. In addition, these derivatives also exhibited a synergistic effect with etoposide and doxorubicin along with the ability to inhibit the migration of A549 cells. Our study suggests that BIT-based new chemical entities could lead to potential anticancer agents.


1986 ◽  
Vol 6 (1) ◽  
pp. 201-208 ◽  
Author(s):  
T Leff ◽  
P Chambon

The adenovirus EIa gene products activate transcription from the viral EIII and EIIaE promoters. We studied the mechanism of this stimulation by constructing a series of chimeric promoter recombinants containing the upstream regions of the EIII and EIIaE promoters linked to the TATA box-start-site regions of the viral major late and EIIa late promoters. By introducing these recombinants into HeLa cells together with recombinants producing the EIa gene products, we demonstrated that the induction of EIII and EIIaE transcription by EIa 13S and 12S mRNA products is dependent on sequences located in the upstream region (approximately -40 to -250) of these promoters. In addition, we showed that the major late and EIIa late upstream promoter regions do not contain such EIa-responsive sequence elements. In contrast, after transfection of these chimeric promoter recombinants into 293 cells (which constitutively express the EIa proteins), we found that their relative levels of transcription are similar and markedly different from those observed when they are cotransfected into HeLa cells with EIa protein-producing recombinants. We conclude that the efficiency of transcription from a given promoter in 293 cells is not necessarily related to the presence of a specific EIa-responsive element.


2009 ◽  
Vol 23 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Martijn Vermeulen ◽  
Anne-Marie M.J.F. Boerboom ◽  
Barry M.G. Blankvoort ◽  
Jac M.M.J.G. Aarts ◽  
Ivonne M.C.M. Rietjens ◽  
...  

1986 ◽  
Vol 6 (1) ◽  
pp. 201-208
Author(s):  
T Leff ◽  
P Chambon

The adenovirus EIa gene products activate transcription from the viral EIII and EIIaE promoters. We studied the mechanism of this stimulation by constructing a series of chimeric promoter recombinants containing the upstream regions of the EIII and EIIaE promoters linked to the TATA box-start-site regions of the viral major late and EIIa late promoters. By introducing these recombinants into HeLa cells together with recombinants producing the EIa gene products, we demonstrated that the induction of EIII and EIIaE transcription by EIa 13S and 12S mRNA products is dependent on sequences located in the upstream region (approximately -40 to -250) of these promoters. In addition, we showed that the major late and EIIa late upstream promoter regions do not contain such EIa-responsive sequence elements. In contrast, after transfection of these chimeric promoter recombinants into 293 cells (which constitutively express the EIa proteins), we found that their relative levels of transcription are similar and markedly different from those observed when they are cotransfected into HeLa cells with EIa protein-producing recombinants. We conclude that the efficiency of transcription from a given promoter in 293 cells is not necessarily related to the presence of a specific EIa-responsive element.


1993 ◽  
Vol 294 (3) ◽  
pp. 779-784 ◽  
Author(s):  
C S Song ◽  
S Her ◽  
M Slomczynska ◽  
S J Choi ◽  
M H Jung ◽  
...  

The far upstream region of the rat androgen receptor (AR) gene has been cloned, and the nucleotide sequence up to -2656 bp established. Nested deletion mutants of rat AR 5′ flanking sequences were ligated to the luciferase reporter gene, and their promoter activities were examined in transfected COS1 cells. Results show a critical cis-acting domain located between positions -960 and -940. Deletion of this cis element resulted in a greater than 90% decrease in the promoter activity. A nuclear protein that specifically binds to this 21-nucleotide sequence was identified by gel mobility shift analysis. The -960/-940 cis element has no identify to the binding sequence of any known transcription factor. Furthermore, the cognate binding protein is present in both rat and human (HeLa) cell nuclear extracts. We conclude that a novel trans-activator interacting at the -960/-940 region plays a critical role in the regulation of AR gene expression.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4246-4246
Author(s):  
Gauthami S. Jalagadugula ◽  
Danny Dhanasekharan ◽  
A.Koneti Rao

Abstract Human erthroleukemia cells (HEL) differentiate towards megakaryocytic (MK) phenotype when stimulated with phorbol 12-myristate-13-acetate (PMA). We observed that the expression of Gq, a protein that plays a major role in platelet signal transduction, is increased in PMA-treated HEL cells. Western blotting revealed that Gq is upregulated in PMA-treated cells relative to untreated cells. Gq gene induction by PMA treatment was investigated with respect to transcriptional control. Serial 5′-truncations of the upstream region (upto 2727 bp from the ATG) of Gq gene were fused to a luciferase (Luc) reporter gene vector, PGL-3 Basic, and were transiently transfected into HEL cells in the absence and presence of PMA (10 nM). After 24 h, reporter gene activities were measured using Dual Luciferase Reporter Assay System (Promega). A reporter plasmid −1042 bp-Luc with a genomic region −1042/−1 showed a 12 fold activity in PMA treated cells and 4 fold activity in untreated cells. Its truncated plasmid with the genomic region −1036/−1 showed a decrease in luciferase activity by 50% in treated cells; and the activity became identical to that in untreated cells. Further truncation between −1036 and −1011 caused a complete loss of activity in both the cells. Thus, a PMA responsive element was localized to a region between −1042 and −1037 bp. Transcription factor data base search (TFSEARCH) predicted two consensus sites for early growth response factor EGR-1 at -1042/−1031 and −1026/−1015. Gel shift studies were performed with two oligos, −1042/−1012 and −1036/−1012, and nuclear extracts from PMA- treated and untreated cells. The studies with −1042/−1012 probe and extracts from treated cells showed that there was nuclear protein binding, which was abolished by competition with the consensus EGR-1 sequence. In extracts from untreated cells, the protein binding was observed but was not competed with consensus EGR-1 sequence. This suggests EGR-1 binding to the region −1042/−1012 in PMA-treated cells and role for this transcription factor in inducing Gq promoter activity. Moreover, studies on the region −1036/−1012 showed nuclear protein binding that was identical between extracts of untreated and treated cells, and it was not competed with consensus EGR-1 sequence. These findings suggest that, EGR-1 binding is localized to −1042/−1037, but not to −1036/−1012. Conclusion: A PMA responsive sequence (−1042/−1037) was identified in the Gq promoter. Our studies suggest that EGR-1 binding to this sequence confers the PMA responsive activity. These studies provide further evidence that EGR-1 plays an important role in the upregulation of Gq expression during PMA induced megakaryocytic differentiation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 699-699 ◽  
Author(s):  
Guangfen Mao ◽  
Satya P. Kunapuli ◽  
A. Koneti Rao

Abstract We have previously described a patient with platelet phospholipase C (PLC)-β2 deficiency characterized by impaired platelet responses to activation with multiple G-protein coupled receptor agonists. The PLC-β2 coding sequence was normal and platelet PLC-β2 mRNA levels were decreased in the patient (Blood, 2002, 99:905). Very little is currently known regarding the transcriptional regulation of PLC-β2. PCR-amplification of patient leukocyte DNA and sequencing of the PLC-β2 5′-upstream region revealed a heterozygous 13-bp deletion (−1645 to −1633 bp from ATG) that encompasses a consensus binding site (GGGAATTCCC) for nuclear factor-κB, NF-κB. This deletion was present in the propositus and her affected son, but not in control subjects. PCR amplification of region −1791 to −1606 bp of genomic DNA revealed one band in 5 control subjects (size ~186 bp) on agarose gel electrophoresis but 2 bands in the patient and her son, consistent with a heterozygous defect. Luciferase reporter gene studies were performed in human erythroleukemia (HEL) cells treated with phorbol myristate acetate (PMA, 30 nM) to induce megakaryocytic transformation. Genomic fragment (−1648/−23 nt) of PLC-β2 5′-upstream sequence and its truncated form without the 13 nt region (−1633/−23 nt) were inserted upstream of luciferase gene in a promoterless expression vector PGL3-basic (Promega) and transiently transfected into HEL cells. Truncation of the wild-type −1648/−23 fragment at 1631 bp resulted in a consistent decrease in promoter activity by ~ 25% (6 experiments, p<0.05). Protein binding assay (EMSA) was performed using PMA-treated HEL cell nuclear extracts and oligonucleotide probes (−1652/−1628 bp) with wild-type and mutated NF-κB consensus sites. Specific protein binding to the wild-type oligonucleotide was abolished when the NF-κB consensus sequence was deleted or mutated. Protein binding to wild-type probe was not competed by the unlabeled mutant oligonucleotide lacking NF-κB consensus sequence. In supershift assay, antibody targeted against the p65 subunit of NF-κB abolished protein binding, indicating a role for NF-κB. In summary, our studies demonstrate in the 5′-upstream region of PLC-β2 gene of the patient a 13-bp deletion that has a consensus site for NF-κB. Luciferase gene promoter assays demonstrate loss of activity when the 13-bp site is truncated. These studies provide evidence that impaired regulation of PLC-β2 gene by NF-κB may be the basis for the PLC-β2 deficiency in our patient. They show for the first time that PLC-β2, the most abundant β-PLC in platelets, is regulated by NF-κB. These findings are highly relevant because of the important role of PLC-β2 in platelet function, and of NF-κB in megakaryocytic differentiation and atherosclerosis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1831-1831
Author(s):  
Gauthami S Jalagadugula ◽  
Gurpreet Kaur ◽  
Guangfen Mao ◽  
Danny Dhanasekaran ◽  
A. Koneti Rao

Abstract RUNX1 (also known as CBFA2 or AML1) is a transcription factor that plays a major role in hematopoiesis. Haplodeficiency of RUNX1 has been associated with familial thrombocytopenia, impaired megakaryopoiesis, impaired platelet function and predisposition to acute myeloid leukemia. We have reported a patient with inherited thrombocytopenia and abnormal platelet function (Gabbeta et al, Blood87:1368–76, 1996). The patient platelets showed impaired phosphorylation of pleckstrin and myosin light chain, diminished GPIIb-IIIa activation and decreased platelet protein kinase C-𝛉. This was associated with a heterozygous nonsense mutation in transcription factor RUNX1 (Sun et al, Blood103: 948–54, 2004). Platelet transcript profiling showed a striking downregulation of myosin light chain 9 (MYL9) by ~77-fold relative to normal platelets (Sun et al, J. Thromb Haemost.5: 146–54, 2007). Myosin light chains (MLCs) play an important role in platelet responses to activation, in platelet biogenesis, and are involved in cellular processes such as cytokinesis, cell adhesion, cell contraction, cell migration. We have addressed the hypothesis that MYL9 is a direct transcriptional target of RUNX1. Studies were performed in human erythroleukemia (HEL) cells treated with phorbol 12-myristate 13-acetate (PMA) for 24 h to induce megakaryocytic transformation. To determine endogenous interaction of RUNX1 with MYL9 promoter, we performed chromatin immunoprecipitation (ChIP) assay using anti-RUNX1 antibody. These studies revealed RUNX1 binding to MYL9 chromatin at −742/−529 bp upstream of the ATG codon. TFSEARCH revealed four RUNX1 sites within this region. We performed electrophoretic mobility shift assay (EMSA) using probes containing each of the RUNX1 motifs and PMA-treated nuclear extracts from HEL cells. With each probe, protein binding was observed that was competed by excess unlabelled probe and inhibited by anti-RUNX1 antibody indicating RUNX1 as the protein involved. This protein binding was not competed by oligos containing mutations in the specific RUNX1 sites. No binding was noted directly to the mutant probes. To further corroborate our findings, we performed transient-ChIP analysis where wild type luciferase reporter construct −691/+4 and constructs with each of the RUNX1 sites individually mutated were transiently transfected into HEL cells. ChIP was performed using these cells and anti-RUNX1 antibody, and the expression analyzed by PCR amplification with a forward primer from MYL9 promoter sequence and reverse primer from luciferase vector sequence. Amplification was observed with immunoprecipitated wild type construct but not with any of the mutant constructs. Thus, RUNX1 interacts in vivo with MYL9 promoter, and the multiple RUNX1 sites interact with each other, as also shown for other genes. To test the functional relevance, the wild type construct −691/+4 containing all 4 RUNX1 sites or mutant constructs with each site individually deleted were cloned into firefly luciferase reporter gene vector and transfected into HEL cells. Deletion of RUNX1 site 1, 2, 3 or 4 caused ~60–90% reduction in the activity indicating that each site was functional. Lastly, siRNA mediated knock down of RUNX1 in HEL cells was associated with a decrease in both RUNX1 and MYL9 protein. Conclusions: Our results provide the first evidence that MYL9 gene is transcriptionally regulated by RUNX1. They provide evidence for the presence of multiple RUNX1 sites in MYL9 promoter, as also observed in other genes. Moreover, these studies provide a cogent mechanism for the MYL9 transcript downregulation and the impaired MLC-phosphorylation we have previously described in association with RUNX1 haplodeficiency.


Author(s):  
Malgorzata Gorniak-Walas ◽  
Karolina Nizinska ◽  
Katarzyna Lukasiuk

AbstractTweety-homolog 1 protein (Ttyh1) is abundantly expressed in neurons in the healthy brain, and its expression is induced under pathological conditions. In hippocampal neurons in vitro, Ttyh1 was implicated in the regulation of primary neuron morphology. However, the mechanisms that underlie transcriptional regulation of the Ttyh1 gene in neurons remain elusive. The present study sought to identify the promoter of the Ttyh1 gene and functionally characterize cis-regulatory elements that are potentially involved in the transcriptional regulation of Ttyh1 expression in rat dissociated hippocampal neurons in vitro. We cloned a 592 bp rat Ttyh1 promoter sequence and designed deletion constructs of the transcription factors specificity protein 1 (Sp1), E2F transcription factor 3 (E2f3), and achaete-scute homolog 1 (Ascl1) that were fused upstream of a luciferase reporter gene in pGL4.10[luc2]. The luciferase reporter gene assay showed the possible involvement of Ascl1, Sp1, and responsive cis-regulatory elements in Ttyh1 expression. These findings provide novel information about Ttyh1 gene regulation in neurons.


Sign in / Sign up

Export Citation Format

Share Document