scholarly journals Probability of failure analysis in flexible pavements through the reliability concept

Author(s):  
Loana Henriquez Sanchez
2006 ◽  
Vol 324-325 ◽  
pp. 223-226 ◽  
Author(s):  
Xin Chi Yan ◽  
Yuan Hua

Because there were many random factors, the failure analysis and reliability analysis of stochastic structural system was very difficult. In this paper, failure procedure and reliability analysis flow chart of stochastic structural system based on stochastic finite element were present. Establishment of the safety margin, reduced member stiffness matrix and opposite sign of the equivalent nodal force was analyzed in the failure process. Stochastic finite element method was adopt to solve the structures’ stochastic, and the reliability of structural system is evaluated by PNET method. According to probabilities of the failure paths redound to probability of failure of the structural system, the most significant failure paths was determined on the basis of the branch-and-bound method. Then, a classical 48-bar space truss problem is made as an example to illustrate the predominance of this algorithm, the calculation shows that the analysis of the failure process is justified; this methodology is efficient and useful for reliability analysis of large stochastic structural system.


Author(s):  
John R. Devaney

Occasionally in history, an event may occur which has a profound influence on a technology. Such an event occurred when the scanning electron microscope became commercially available to industry in the mid 60's. Semiconductors were being increasingly used in high-reliability space and military applications both because of their small volume but, also, because of their inherent reliability. However, they did fail, both early in life and sometimes in middle or old age. Why they failed and how to prevent failure or prolong “useful life” was a worry which resulted in a blossoming of sophisticated failure analysis laboratories across the country. By 1966, the ability to build small structure integrated circuits was forging well ahead of techniques available to dissect and analyze these same failures. The arrival of the scanning electron microscope gave these analysts a new insight into failure mechanisms.


Author(s):  
Evelyn R. Ackerman ◽  
Gary D. Burnett

Advancements in state of the art high density Head/Disk retrieval systems has increased the demand for sophisticated failure analysis methods. From 1968 to 1974 the emphasis was on the number of tracks per inch. (TPI) ranging from 100 to 400 as summarized in Table 1. This emphasis shifted with the increase in densities to include the number of bits per inch (BPI). A bit is formed by magnetizing the Fe203 particles of the media in one direction and allowing magnetic heads to recognize specific data patterns. From 1977 to 1986 the tracks per inch increased from 470 to 1400 corresponding to an increase from 6300 to 10,800 bits per inch respectively. Due to the reduction in the bit and track sizes, build and operating environments of systems have become critical factors in media reliability.Using the Ferrofluid pattern developing technique, the scanning electron microscope can be a valuable diagnostic tool in the examination of failure sites on disks.


Sign in / Sign up

Export Citation Format

Share Document