In Vitro Impact of a Glaze/ Composite Resin Sealant on the Surface Roughness and Bacterial Adhesion of One Microhybrid and Three Nanofilled Composite Resins

2013 ◽  
Vol 3 (2) ◽  
pp. 130-144
Author(s):  
Salah Hasab Mahmoud ◽  
Naglaa Rezk El-Kholany ◽  
Mohammed EL-Awady Grawish ◽  
Salwa Abd El-Raof El- Negoly

2020 ◽  
Vol 45 (2) ◽  
pp. 209-218 ◽  
Author(s):  
DC Somacal ◽  
FB Manfroi ◽  
MSG Monteiro ◽  
SD Oliveira ◽  
HR Bittencourt ◽  
...  

SUMMARY The aim was to evaluate, in vitro, quantitatively and qualitatively, the effect of pH cycling and simulated toothbrushing on surface roughness (Ra) and bacterial adhesion (Cn) of bulk-fill composite resins. Thirty specimens of each composite resin, 5 mm wide and 4 mm high, were obtained: group 1 (control): Filtek Z250 (Z250); group 2: Filtek Bulk-Fill (FTK); group 3: Tetric N-Ceram Bulk-Fill (TTC); and group 4: Aura Bulk-Fill (AUR). After 24 hours, the specimens were polished and then alternated with demineralization/remineralization solutions for 15 cycles of 24 hours each at 37°C. Then the specimens were submitted to simulated toothbrushing. The Ra and Cn measurements were quantitatively analyzed in three stages: after polishing (Ra0 and Cn0), after pH cycling (Ra1 and Cn1), and after simulated toothbrushing (Ra2 and Cn2). The Ra values were submitted to two-way analysis of variance, followed by the Tukey test (α=0.05). The Kruskal-Wallis test, followed by multiple comparisons, was applied for Cn analysis. Surface topography and bacterial adhesion were observed by scanning electron microscopy (SEM). Z250, FTK, and TTC showed no significant change in Ra regardless of the treatment performed; AUR obtained increased Ra at Ra2 (p<0.05). FTK differed from the others at Cn0 and Cn1 (p<0.05). At Cn2, there was no difference among the composite resins. SEM images showed the exposure of fillers and microcavities at Ra1 and Ra2. There was greater bacterial adhesion at Cn1 for Z250 and FTK. It was concluded that the pH cycling caused surface degradation of all composite resins, which was potentiated by simulated toothbrushing. However, only AUR presented an increased Ra. Bacterial adhesion occurred on all composite resins after pH cycling; however, after simulated toothbrushing, adhesion of dispersed bacteria was similar for all the composite resin groups.



2013 ◽  
Vol 14 (6) ◽  
pp. 1137-1144 ◽  
Author(s):  
Hideaki Kyoizumi ◽  
Junji Yamada ◽  
Toshimitsu Suzuki ◽  
Masafumi Kanehira ◽  
Werner J Finger ◽  
...  

ABSTRACT Aim To investigate and compare the effects of toothbrushes with different hardness on abrasion and surface roughness of composite resins. Materials and methods Toothbrushes (DENT. EX Slimhead II 33, Lion Dental Products Co. Ltd., Tokyo, Japan) marked as soft, medium and hard, were used to brush 10 beam-shaped specimens of each of three composites resins (Venus [VEN], Venus Diamond [VED] and Venus Pearl [VEP]; HeraeusKulzer) with standardized calcium carbonate slurry in a multistation testing machine (2N load, 60 Hz). After each of five cycles with 10k brushing strokes the wear depth and surface roughness of the specimens were determined. After completion of 50k strokes representative samples were inspected by SEM. Data were treated with ANOVA and regression analyses (p < 0.05). Results Abrasion of the composite resins increased linearly with increasing number of brushing cycles (r2 > 0.9). Highest wear was recorded for VEN, lowest for VED. Hard brushes produced significantly higher wear on VEN and VEP, whereas no difference in wear by toothbrush type was detected for VED. Significantly highest surface roughness was found on VED specimens (Ra > 1.5 μm), the lowest one on VEN (Ra < 0.3 μm). VEN specimens showed increased numbers of pinhole defects when brushed with hard toothbrushes, surfaces of VEP were uniformly abraded without level differences between the prepolymerized fillers and the glass filler-loaded matrix, VED showed large glass fillers protruding over the main filler-loaded matrix portion under each condition. Conclusion Abrasion and surface roughness of composite resins produced by toothbrushing with dentifrice depend mainly on the type of restorative resin. Hardness grades of toothbrushes have minor effects only on abrasion and surface roughness of composite resins. No relationship was found between abrasion and surface roughness. Clinical significance The grade of the toothbrush used has minor effect on wear, texture and roughness of the composite resin. How to cite this article Kyoizumi H, Yamada J, Suzuki T, Kanehira M, Finger WJ, Sasaki K. Effects of Toothbrush Hardness on in vitro Wear and Roughness of Composite Resins. J Contemp Dent Pract 2013;14(6):1137-1144.



2020 ◽  
Vol 33 (2) ◽  
pp. 59-68
Author(s):  
Bruna Tavares ◽  
Fabiana França ◽  
Roberta Basting ◽  
Basting Turssi ◽  
Turssi Amaral

The aim of this in vitro study was to evaluate the effect of bleaching protocols on the surface roughness (Ra), color change and surface micromorphology of a low-viscosity bulk-fill composite (Filtek Bulk Fill Flow, 3M ESPE), a highviscosity bulk-fill composite (Filtek Bulk Fill, 3M ESPE) and a conventional nanoparticulate composite resin (control) (Filtek Z350 XT, 3M ESPE). Forty samples of each composite (disks 5 mm in diameter and 2 mm thick) were randomly divided into four groups (n=10), according to bleaching protocol: a) 10% carbamide peroxide gel (Opalescence, Ultradent Products) (2 h/ day, for 14 days); b) 40% hydrogen peroxide gel (Opalescence Boost, Ultradent Products) (three bleaching sessions, once a week, 45 min/session); c) whitening rinse (Listerine Whitening Extreme, Johnson & Johnson) (2 min/day, for 14 days); and d) distilled water (control). The samples were submitted to triplicate readings (Ra and color [CIELAB parameters]) before and after contact with bleaching protocols. Micromorphology was analyzed in a scanning electron microscope (SEM). Ra and color parameters (ΔL, Δa, Δb and ΔE) were analyzed by generalized linear models (α=0.05). The Ra of the high-viscosity bulk-fill was significantly higher than that of the other composites (p<0.05). Ra increased significantly (p<0.05) and surface became more irregular (SEM analysis) in all the composite resins, regardless of the bleaching protocol (p<0.05). The high-viscosity bulk-fill composite resin group had significantly lower ΔE (p<0.05) than the nanoparticulate composite resin group immersed in distilled water. It was concluded that the characteristics of each resin significantly influenced the Ra more than the bleaching protocol. The high-viscosity bulk-fill resin presented minor color change.



Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2485
Author(s):  
Roberta Condò ◽  
Gianluca Mampieri ◽  
Guido Pasquantonio ◽  
Aldo Giancotti ◽  
Paola Pirelli ◽  
...  

Bacterial adhesion to the surface of orthodontic materials is an important step in the formation and proliferation of plaque bacteria, which is responsible for enamel demineralization and periodontium pathologies. With the intent of investigating if adhesive resins used for bracket bonding are prone to bacteria colonization, the surface roughness of these materials has been analyzed, combining information with a novel methodology to observe the internal structures of orthodontic composites. Scanning electron microscopy, combined with focus ion bean micromachining and stylus profilometry analyses, were performed to evaluate the compositional factors that can influence specific pivotal properties facilitating the adhesion of bacteria to the surface, such as surface roughness and robustness of three orthodontic adhesive composite resins. To confirm these findings, contact angle measurements and bacteria incubation on resin slide have been performed, evaluating similarities and differences in the final achievement. In particular, the morphological features that determine an increase in the resins surface wettability and influence the bacterial adhesion are the subject of speculation. Finally, the focused ion beam technique has been proposed as a valuable tool to combine information coming from surface roughness with specific the internal structures of the polymers.



2006 ◽  
Vol 17 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Janisse Martinelli ◽  
Fernanda de Carvalho Panzeri Pires-de-Souza ◽  
Luciana Assirati Casemiro ◽  
Camila Tirapelli ◽  
Heitor Panzer

This study compared the abrasion resistance of direct composite resins cured by light-emitting diodes (LED) and halogen light-curing units. Twenty specimens (12 mm in diameter; 1.0 mm thick) of each composite resin [TPH (Dentsply); Definite (Degussa); Charisma (Heraus Kulzer)] were prepared using a polytetrafluoroethylene matrix. Ten specimens per material were cured with the LED source and 10 with the halogen lamp for 40 s. The resin discs were polished, submitted to initial surface roughness reading (Ra initial - mum) in a roughness tester and stored in water at 37°C for 15 days. The specimens were weighed (M1) and submitted to simulated toothbrushing using slurry of water and dentifrice with high abrasiveness. After 100 minutes in the toothbrushing simulator, the specimens were cleaned, submitted to a new surface roughness reading (Ra final - mum) and reweighed (M2). Mass loss was determined as the difference between M1 and M2. Data were recorded and analyzed statistically by one-way ANOVA and Tukey Test at 5% significance level. The composite resin with greater size of inorganic fillers (TPH) showed the lowest mass loss and surface roughness means, indicating a higher resistance to toothbrush abrasion (p<0.05). Definite cured with LED presented the least resistance to toothbrush abrasion, showing the highest means of surface roughness and mass loss (p<0.05). The LED source did not show the same effectiveness as the halogen lamp for polymerizing this specific composite resin. When the composite resins were cured a halogen LCU, no statistically significant difference was observed among the materials (p>0.05). It may be concluded that the type of light-curing unit and the resin composition seemed to interfere with the materials' resistance to abrasion.



2005 ◽  
Vol 16 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Silvia Helena Barbosa ◽  
Régia Luzia Zanata ◽  
Maria Fidela de Lima Navarro ◽  
Osvaldo Benoni Nunes

This study examined the average surface roughness (Ra, µm) of 2 microfilled (Durafill and Perfection), 1 hybrid (Filtek Z250) and 2 packable composite resins (Surefil and Fill Magic), before (baseline) and after eight different finishing and polishing treatments. The surface roughness was assessed using a profilometer. Ten specimens of each composite resin were randomly subjected to one of the following finishing/polishing techniques: A - carbide burs; B - fine/extrafine diamond burs; C - Sof-Lex aluminum oxide discs; D - Super-Snap aluminum oxide discs; E - rubber polishing points + fine/extrafine polishing pastes; F - diamond burs + rubber polishing points + fine/extrafine polishing pastes; G - diamond burs + Sof-Lex system; H - diamond burs + Super-Snap system. Data were analyzed using two-way ANOVA and Tukey's HSD test. Significant differences (p<0.05) were detected among both the resins and the finishing/polishing techniques. For all resins, the use of diamond burs resulted in the greatest surface roughness (Ra: 0.69 to 1.44 µm). The lowest Ra means were obtained for the specimens treated with Sof-Lex discs (Ra: 0.11 to 0.25 µm). The Ra values of Durafill were lower than those of Perfection and Filtek Z250, and these in turn had lower Ra than the packable composite resins. Overall, the smoothest surfaces were obtained with the use the complete sequence of Sof-Lex discs. In areas that could not be reached by the aluminum oxide discs, the carbide burs and the association between rubber points and polishing pastes produced satisfactory surface smoothness for the packable and hybrid composite resins, respectively.



2017 ◽  
Vol 19 (4) ◽  
pp. 1-6
Author(s):  
Meghna Singh ◽  
Neerja Singh ◽  
Ashish Saini ◽  
Pranav Singh ◽  
Tanu Tewari ◽  
...  


2014 ◽  
Vol 39 (3) ◽  
pp. 325-331 ◽  
Author(s):  
E Karaman ◽  
G Ozgunaltay

SUMMARY Aim To determine the volumetric polymerization shrinkage of four different types of composite resin and to evaluate microleakage of these materials in class II (MOD) cavities with and without a resin-modified glass ionomer cement (RMGIC) liner, in vitro. Materials and Methods One hundred twenty-eight extracted human upper premolar teeth were used. After the teeth were divided into eight groups (n=16), standardized MOD cavities were prepared. Then the teeth were restored with different resin composites (Filtek Supreme XT, Filtek P 60, Filtek Silorane, Filtek Z 250) with and without a RMGIC liner (Vitrebond). The restorations were finished and polished after 24 hours. Following thermocycling, the teeth were immersed in 0.5% basic fuchsin for 24 hours, then midsagitally sectioned in a mesiodistal plane and examined for microleakage using a stereomicroscope. The volumetric polymerization shrinkage of materials was measured using a video imaging device (Acuvol, Bisco, Inc). Data were statistically analyzed with Kruskal-Wallis and Mann-Whitney U-tests. Results All teeth showed microleakage, but placement of RMGIC liner reduced microleakage. No statistically significant differences were found in microleakage between the teeth restored without RMGIC liner (p&gt;0.05). Filtek Silorane showed significantly less volumetric polymerization shrinkage than the methacrylate-based composite resins (p&lt;0.05). Conclusion The use of RMGIC liner with both silorane- and methacrylate-based composite resin restorations resulted in reduced microleakage. The volumetric polymerization shrinkage was least with the silorane-based composite.



2017 ◽  
Vol 117 (5) ◽  
pp. 669-676 ◽  
Author(s):  
Giacomo Derchi ◽  
Michele Vano ◽  
Antonio Barone ◽  
Ugo Covani ◽  
Alberto Diaspro ◽  
...  


2004 ◽  
Vol 12 (4) ◽  
pp. 307-311 ◽  
Author(s):  
Silvia Kenshima ◽  
Rosa Helena Miranda Grande ◽  
Julio da Motta Singer ◽  
Rafael Yagüe Ballester

The objective of this study was to evaluate in vitro the effect on leakage of two incremental filling techniques and two composite resins with different elastic modulus and similar polymerization shrinkage. Eighty Class V cavities (4x4x2mm) were prepared in bovine incisors and were randomly restored with Z-250 (Z) or Durafill VS (D) + Single Bond in axial (a) or oblique (o) increments. The restorations were divided into two groups: Not Aged - N (4-hour-storage in water at 37ºC) and Aged - A (1-week storage in water at 37ºC + 1000 x - 5º-55ºC / 1-min dwell time). The specimens were covered with 2 coats of nail varnish so that only the restoration margins were exposed to silver nitrate 50% (2h) and developed under fluorescent light (8h). After they were sectioned twice in buccal-lingual direction, the four exposed surfaces were digitized (Vidcap) and the silver nitrate penetration was measured (ImageLab) at the incisal and gingival walls. Data were analyzed by a 3-way ANOVA (Resin, Filling Technique and Aging) separately for incisal and gingival walls (alpha=0.05). Resin and Aging were statistically significant either for the incisal and the gingival walls. The microfill composite resin infiltrated more than the hybrid composite. The thermal cycling caused an overall increase in silver nitrate penetration. The filling technique affected leakage depending on the composite resin and aging regimen.



Sign in / Sign up

Export Citation Format

Share Document