scholarly journals Unsaturated fatty acids enhance low density lipoprotein uptake and degradation by peripheral blood mononuclear cells.

Author(s):  
J Loscalzo ◽  
J Freedman ◽  
M A Rudd ◽  
I Barsky-Vasserman ◽  
D E Vaughan
2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Hung-Ju Lin ◽  
Sung-Liang Yu ◽  
Ta-Chen Su ◽  
Hsiu-Ching Hsu ◽  
Ming-Fong Chen ◽  
...  

Abstract Statins inhibit cholesterol biogenesis and modulate atheroma inflammation to reduce cardiovascular risks. Promoted by immune and non-immune cells, serum C-reactive protein (CRP) might be a biomarker suboptimal to assess inflammation status. Although it has been reported that statins modulated inflammation via microRNAs (miRNAs), evidence remains lacking on comprehensive profiling of statin-induced miRNAome alterations in immune cells. We recruited 19 hypercholesterolemic patients receiving 2 mg/day pitavastatin and 15 ones receiving 10 mg/day atorvastatin treatment for 12 weeks, and performed microarray-based profiling of 1733 human mature miRNAs in peripheral blood mononuclear cells (PBMCs) before and after statin treatment. Differentially expressed miRNAs were determined if their fold changes were >1.50 or <0.67, after validated using quantitative polymerase chain reaction (qPCR). The miRSystem and miTALOS platforms were utilized for pathway analysis. Of the 34 patients aged 63.7 ± 6.2 years, 27 were male and 19 were with coronary artery disease. We discovered that statins induced differential expressions of miR-483-5p, miR-4667-5p, miR-1244, and miR-3609, with qPCR-validated fold changes of 1.74 (95% confidence interval, 1.33–2.15), 1.61 (1.25–1.98), 1.61 (1.01–2.21), and 1.68 (1.19–2.17), respectively. The fold changes of the four miRNAs were not correlated with changes of low-density-lipoprotein cholesterol or CRP, after sex, age, and statin type were adjusted. We also revealed that RhoA and transforming growth factor-β signaling pathways might be regulated by the four miRNAs. Given our findings, miRNAs might be involved in statin-induced inflammation modulation in PBMCs, providing likelihood to assess and reduce inflammation in patients with atherosclerotic cardiovascular diseases.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3495
Author(s):  
Ivan Vlasov ◽  
Alexandra Panteleeva ◽  
Tatiana Usenko ◽  
Mikhael Nikolaev ◽  
Artem Izumchenko ◽  
...  

To assess the biology of the lethal endpoint in patients with SARS-CoV-2 infection, we compared the transcriptional response to the virus in patients who survived or died during severe COVID-19. We applied gene expression profiling to generate transcriptional signatures for peripheral blood mononuclear cells (PBMCs) from patients with SARS-CoV-2 infection at the time when they were placed in the Intensive Care Unit of the Pavlov First State Medical University of St. Petersburg (Russia). Three different bioinformatics approaches to RNA-seq analysis identified a downregulation of three common pathways in survivors compared with nonsurvivors among patients with severe COVID-19, namely, low-density lipoprotein (LDL) particle receptor activity (GO:0005041), important for maintaining cholesterol homeostasis, leukocyte differentiation (GO:0002521), and cargo receptor activity (GO:0038024). Specifically, PBMCs from surviving patients were characterized by reduced expression of PPARG, CD36, STAB1, ITGAV, and ANXA2. Taken together, our findings suggest that LDL particle receptor pathway activity in patients with COVID-19 infection is associated with poor disease prognosis.


Sign in / Sign up

Export Citation Format

Share Document