scholarly journals Beneficial effects of exercise training in compensated heart failure.

Circulation ◽  
1988 ◽  
Vol 78 (3) ◽  
pp. 775-776 ◽  
Author(s):  
R Shabetai
2019 ◽  
Vol 316 (2) ◽  
pp. R110-R120 ◽  
Author(s):  
Yiming Shen ◽  
Jin Bong Park ◽  
So Yeong Lee ◽  
Seong Kyu Han ◽  
Pan Dong Ryu

Exercise training (ExT) normalizes elevated sympathetic nerve activity in heart failure (HF), but the underlying mechanisms are not well understood. In this study, we examined the effects of 3 wk of ExT on the electrical activity of the hypothalamic presympathetic neurons in the brain slice of HF rats. HF rats were prepared by ligating the left descending coronary artery. The electrophysiological properties of paraventricular nucleus neurons projecting to the rostral ventrolateral medulla (PVN-RVLM) were examined using the slice patch-clamp technique. The neuronal firing rate was elevated in HF rats, and ExT induced a reduction in the firing rate ( P < 0.01). This ExT-induced decrease in the firing rate was associated with an increased frequency of spontaneous and miniature inhibitory postsynaptic current (IPSCs; P < 0.05). There was no significant change in excitatory postsynaptic current. Replacing Ca2+ with Mg2+ in the recording solution reduced the elevated IPSC frequency in HF rats with ExT ( P < 0.01) but not in those without ExT, indicating an increase in the probability of GABA release. In contrast, ExT did not restore the reduced GABAA receptor-mediated tonic inhibitory current in HF rats. A GABAA receptor blocker (bicuculline, 20 μM) increased the firing rate in HF rats with ExT ( P < 0.01) but not in those without ExT. Collectively, these results show that ExT normalized the elevated firing activity by increasing synaptic GABA release in PVN-RVLM neurons in HF rats. Our findings provide a brain mechanism underlying the beneficial effects of ExT in HF, which may shed light on the pathophysiology of other diseases accompanied by sympathetic hyperactivation.


2009 ◽  
Vol 34 (3) ◽  
pp. 336-339 ◽  
Author(s):  
Renée Ventura-Clapier

Energy metabolism is at the crossroad of cell function and dysfunction. Cardiac and skeletal muscle cells, the energy metabolism of which is high, fluctuating, and adaptable to the special needs of the body, have developed sophisticated strategies for synthesizing, transferring, and utilizing energy in accordance with the needs of the body. Adaptation to endurance training mainly involves energetic remodelling in skeletal muscles, but less is known for the cardiac muscle. Alterations in energy metabolism participate in many pathophysiological processes, among which is heart failure. Because endurance training improves symptoms and quality of life and decreases mortality rate and hospitalization, it is increasingly recognized as a beneficial practice for heart failure patients. The mechanisms involved in the beneficial effects of exercise training are far from being understood. Proper evaluation of these mechanisms is thus a major health issue for populations living in industrialized countries. This review mainly focuses on oxidative metabolism and intracellular energy transfer in muscles and the heart, their alterations in heart failure, and the effects of endurance exercise training.


2017 ◽  
Vol 123 (6) ◽  
pp. 1579-1591
Author(s):  
Dalila Boudia ◽  
Valérie Domergue ◽  
Philippe Mateo ◽  
Loubina Fazal ◽  
Mathilde Prud’homme ◽  
...  

Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals.


2006 ◽  
Vol 291 (6) ◽  
pp. F1148-F1156 ◽  
Author(s):  
Hong Zheng ◽  
Yi-Fan Li ◽  
Irving H. Zucker ◽  
Kaushik P. Patel

Experiments were performed to test the postulate that exercise training (ExT) improves the blunted renal excretory response to acute volume expansion (VE), in part, by normalizing the neural component of the volume reflex typically observed in chronic heart failure (HF). Diuretic and natriuretic responses to acute VE were examined in sedentary and ExT groups of rats with either HF or sham-operated controls. Experiments were performed in anesthetized (Inactin) rats 6 wk after coronary ligation surgery. Histological data indicated that there was a 34.9 ± 3.0% outer and 42.5 ± 3.2% inner infarct of the myocardium in the HF group. Sham rats had no observable damage to the myocardium. In sedentary rats with HF, VE produced a blunted diuresis (46% of sham) and natriuresis (35% of sham) compared with sham-operated control rats. However, acute VE-induced diuresis and natriuresis in ExT rats with HF were comparable to sham rats and significantly higher than sedentary HF rats. Renal denervation abolished the salutary effects of ExT on renal excretory response to acute VE in HF. Since glomerular filtration rates were not significantly different between the groups, renal hemodynamic changes may not account for the blunted renal responses in rats with HF. Additional experiments confirmed that renal sympathetic nerve activity responses to acute VE were blunted in sedentary HF rats; however, ExT normalized the renal sympathoinhibition in HF rats. These results confirm an impairment of neurally mediated excretory responses to acute VE in rats with HF. ExT restored the blunted excretory responses as well as the renal sympathoinhibitory response to acute VE in HF rats. Thus the beneficial effects of ExT on cardiovascular regulation in HF may be partly due to improvement of the neural component of volume reflex.


2015 ◽  
Vol 308 (8) ◽  
pp. H792-H802 ◽  
Author(s):  
Carlos E. Negrao ◽  
Holly R. Middlekauff ◽  
Igor L. Gomes-Santos ◽  
Ligia M. Antunes-Correa

Neurohormonal excitation and dyspnea are the hallmarks of heart failure (HF) and have long been associated with poor prognosis in HF patients. Sympathetic nerve activity (SNA) and ventilatory equivalent of carbon dioxide (VE/VO2) are elevated in moderate HF patients and increased even further in severe HF patients. The increase in SNA in HF patients is present regardless of age, sex, and etiology of systolic dysfunction. Neurohormonal activation is the major mediator of the peripheral vasoconstriction characteristic of HF patients. In addition, reduction in peripheral blood flow increases muscle inflammation, oxidative stress, and protein degradation, which is the essence of the skeletal myopathy and exercise intolerance in HF. Here we discuss the beneficial effects of exercise training on resting SNA in patients with systolic HF and its central and peripheral mechanisms of control. Furthermore, we discuss the exercise-mediated improvement in peripheral vasoconstriction in patients with HF. We will also focus on the effects of exercise training on ventilatory responses. Finally, we review the effects of exercise training on features of the skeletal myopathy in HF. In summary, exercise training plays an important role in HF, working synergistically with pharmacological therapies to ameliorate these abnormalities in clinical practice.


2018 ◽  
Vol 12 ◽  
pp. 117954681775143 ◽  
Author(s):  
Eisuke Amiya ◽  
Masanobu Taya

Exercise-based rehabilitation programs have been reported to have beneficial effects for patients with heart failure. However, there is little evidence about whether this is the case in patients with more severe heart failure. In particular, there is a question in the clinical setting whether patients with advanced heart failure and continuous inotropic infusion should be prescribed exercise training. In contrast, many studies conclude that prolonged immobility associated with heart failure profoundly impairs physical function and promotes muscle wasting that could further hasten the course of heart failure. By contrast, exercise training has various effects not only in improving exercise capacity but also on vascular function, skeletal muscle, and autonomic balance. In this review, we summarize the effectiveness and discuss methods of exercise training in patients with advanced heart failure receiving continuous inotropic agents such as dobutamine.


2015 ◽  
Vol 309 (10) ◽  
pp. H1629-H1641 ◽  
Author(s):  
Rodrigo W. A. Souza ◽  
Geysson J. Fernandez ◽  
João P. Q. Cunha ◽  
Warlen P. Piedade ◽  
Luana C. Soares ◽  
...  

Exercise training (ET) has beneficial effects on the myocardium in heart failure (HF) patients and in animal models of induced cardiac hypertrophy and failure. We hypothesized that if microRNAs (miRNAs) respond to changes following cardiac stress, then myocardial profiling of these miRNAs may reveal cardio-protective mechanisms of aerobic ET in HF. We used ascending aortic stenosis (AS) inducing HF in Wistar rats. Controls were sham-operated animals. At 18 wk after surgery, rats with cardiac dysfunction were randomized to 10 wk of aerobic ET (HF-ET) or to a heart failure sedentary group (HF-S). ET attenuated cardiac remodeling as well as clinical and pathological signs of HF with maintenance of systolic and diastolic function when compared with that of the HF-S. Global miRNA expression profiling of the cardiac tissue revealed 53 miRNAs exclusively dysregulated in animals in the HF-ET, but only 11 miRNAs were exclusively dysregulated in the HF-S. Out of 23 miRNAs that were differentially regulated in both groups, 17 miRNAs exhibited particularly high increases in expression, including miR-598, miR-429, miR-224, miR-425, and miR-221. From the initial set of deregulated miRNAs, 14 miRNAs with validated targets expressed in cardiac tissue that respond robustly to ET in HF were used to construct miRNA-mRNA regulatory networks that revealed a set of 203 miRNA-target genes involved in programmed cell death, TGF-β signaling, cellular metabolic processes, cytokine signaling, and cell morphogenesis. Our findings reveal that ET attenuates cardiac abnormalities during HF by regulating cardiac miRNAs with a potential role in cardio-protective mechanisms through multiple effects on gene expression.


Sign in / Sign up

Export Citation Format

Share Document