scholarly journals The role of nitric oxide (NO) in the beneficial effects of chronic exercise training on heart failure in awake dogs

1996 ◽  
Vol 27 (2) ◽  
pp. 34 ◽  
Author(s):  
Jie Wang ◽  
Geng-Hua Yi ◽  
Mathias Knecht ◽  
Milton Packer ◽  
Daniel Burkhoff
2005 ◽  
Vol 288 (5) ◽  
pp. H2332-H2341 ◽  
Author(s):  
Hong Zheng ◽  
Yi-Fan Li ◽  
Kurt G. Cornish ◽  
Irving H. Zucker ◽  
Kaushik P. Patel

Previously, we have demonstrated that an altered endogenous nitric oxide (NO) mechanism within the paraventricular nucleus (PVN) contributes to increased renal sympathetic nerve activity (RSNA) in heart failure (HF) rats. The goal of this study was to examine the effect of exercise training (ExT) in improving the endogenous NO mechanism within the PVN involved in the regulation of RSNA in rats with HF. ExT significantly restored the decreased number of neuronal NO synthase (nNOS)-positive neurons in the PVN (129 ± 17 vs. 99 ± 6). nNOS mRNA expression and protein levels in the PVN were also significantly increased in HF-ExT rats compared with HF-sedentary rats. To examine the functional role of NO within the PVN, an inhibitor of NOS, NG-monomethyl-l-arginine, was microinjected into the PVN. Dose-dependent increases in RSNA, arterial blood pressure (BP), and heart rate (HR) were produced in all rats. There was a blunted increase in these parameters in HF rats compared with the sham-operated rats. ExT significantly augmented RSNA responses in rats with HF (33% vs. 20% at the highest dose), thus normalizing the responses. The NO donor sodium nitroprusside, microinjected into the PVN, produced dose-dependent decreases in RSNA, BP, and HR in both sham and HF rats. ExT significantly improved the blunted decrease in RSNA in HF rats (36% vs. 17% at the highest dose). In conclusion, our data indicate that ExT improves the altered NO mechanism within the PVN and restores NO-mediated changes in RSNA in rats with HF.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1002
Author(s):  
Fabiola Marino ◽  
Mariangela Scalise ◽  
Eleonora Cianflone ◽  
Luca Salerno ◽  
Donato Cappetta ◽  
...  

Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the “nitroso-redox imbalance”. Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.


2019 ◽  
Vol 316 (2) ◽  
pp. R110-R120 ◽  
Author(s):  
Yiming Shen ◽  
Jin Bong Park ◽  
So Yeong Lee ◽  
Seong Kyu Han ◽  
Pan Dong Ryu

Exercise training (ExT) normalizes elevated sympathetic nerve activity in heart failure (HF), but the underlying mechanisms are not well understood. In this study, we examined the effects of 3 wk of ExT on the electrical activity of the hypothalamic presympathetic neurons in the brain slice of HF rats. HF rats were prepared by ligating the left descending coronary artery. The electrophysiological properties of paraventricular nucleus neurons projecting to the rostral ventrolateral medulla (PVN-RVLM) were examined using the slice patch-clamp technique. The neuronal firing rate was elevated in HF rats, and ExT induced a reduction in the firing rate ( P < 0.01). This ExT-induced decrease in the firing rate was associated with an increased frequency of spontaneous and miniature inhibitory postsynaptic current (IPSCs; P < 0.05). There was no significant change in excitatory postsynaptic current. Replacing Ca2+ with Mg2+ in the recording solution reduced the elevated IPSC frequency in HF rats with ExT ( P < 0.01) but not in those without ExT, indicating an increase in the probability of GABA release. In contrast, ExT did not restore the reduced GABAA receptor-mediated tonic inhibitory current in HF rats. A GABAA receptor blocker (bicuculline, 20 μM) increased the firing rate in HF rats with ExT ( P < 0.01) but not in those without ExT. Collectively, these results show that ExT normalized the elevated firing activity by increasing synaptic GABA release in PVN-RVLM neurons in HF rats. Our findings provide a brain mechanism underlying the beneficial effects of ExT in HF, which may shed light on the pathophysiology of other diseases accompanied by sympathetic hyperactivation.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yanti Octavia ◽  
Elza v Deel ◽  
Monique d Waard ◽  
Martine d Boer ◽  
An Moens ◽  
...  

AIMS: Beneficial effects of aerobic exercise training are widely recognized. However, previously we discovered that the positive effects of exercise depend on the underlying cause of cardiac failure. Here we tested the hypothesis that endothelial nitric oxide synthase (eNOS) dependent regulation of the balance between nitric oxide and superoxide (O2•-) is critically involved in determining the effects of exercise. METHODS: Mice were exposed to 8 weeks of voluntary wheel running exercise training (EX) or sedentary housing (SED) immediately following myocardial infarction (MI), pressure overload from a transverse aortic constriction (TAC), or sham (SH) surgery. Subsequently, left ventricular (LV) ejection fraction (EF) was measured by echocardiography and Picrosirius Red staining was performed to measure collagen content. Additionally, total and NOS-dependent LV O2•- were measured using lucigenin-enhanced chemiluminescence without or with NOS inhibitor, L-NAME. eNOS uncoupling was evaluated by determining eNOS monomer dimer protein ratio and peroxynitrite (ONOO-) levels were measured through luminol-enhanced chemiluminescence. RESULTS: Cardiac dysfunction and fibrosis were ameliorated by exercise in MI but not in TAC mice (Table 1). MI and TAC both increased LV O2•- levels. Strikingly, EX diminished O2•- generation in MI, but exacerbated O2•- generation in TAC (Table 1). Furthermore, the EX-induced increase in O2•- levels in TAC were largely NOS-dependent. Accordingly, MI and TAC-induced eNOS uncoupling was normalized by EX in MI but aggravated in TAC mice (Table 1). Similarly, increased ONOO- levels following MI and TAC were diminished by EX in MI, but exacerbated by EX in TAC (Table 1). CONCLUSIONS: EX reduces eNOS-mediated cardiac oxidative stress in MI. In contrast, beneficial effects of EX are lacking in cardiac pressure-overload following TAC, due to EX-induced aggravation of ONOO- formation, eNOS uncoupling and concomitant oxidative stress.


2019 ◽  
Vol 47 (5) ◽  
pp. 1817-1828 ◽  
Author(s):  
Fei Yang ◽  
Li Na Zhao ◽  
Yi Sun ◽  
Zhuang Chen

The heart is one of the organs most vulnerable to sepsis. This review describes the general characteristics of sepsis-induced cardiomyopathy and the main pathogenesis of myocardial dysfunction in sepsis. Levosimendan is a novel drug for treatment of sepsis-induced myocardial dysfunction. This review also elaborates on the pathogenesis of levosimendan, including the mechanisms of its anti-inflammatory effects, improvement of myocardial ischaemia, increased synthesis of nitric oxide, vascular endothelial cell protection, increased myocardial contractility, improved diastolic function, and inhibition of hypoxia-inducible factor-1α expression. Many clinical studies have proven that levosimendan effectively prevents myocardial dysfunction in sepsis. In addition to the widespread use of levosimendan in patients with heart failure, the role of levosimendan in the treatment of patients with sepsis-induced cardiomyopathy will be increasingly studied and applied in the future.


1996 ◽  
Vol 27 (2) ◽  
pp. 202
Author(s):  
Joshua M. Hare ◽  
Michael M. Givertz ◽  
Mark A. Creage ◽  
Wilson S. Colucci

2012 ◽  
Vol 18 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Viviane M. Conraads ◽  
Emeline M. Van Craenenbroeck ◽  
Catherine De Maeyer ◽  
An M. Van Berendoncks ◽  
Paul J. Beckers ◽  
...  

2015 ◽  
Vol 47 (12) ◽  
pp. 2504-2512 ◽  
Author(s):  
JASENKA KRALJEVIC ◽  
MORTEN ANDRE HØYDAL ◽  
MARKO LJUBKOVIC ◽  
JOSE BIANCO NASCIMENTO MOREIRA ◽  
KARI JØRGENSEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document