Abstract 458: Role of Colony Stimulating Factor 1 Receptor in Graft Vascular Disease

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Vanessa Almonte ◽  
Oriyanhan Wunimenghe ◽  
Dario F Riascos-Bernal ◽  
Prameladevi Chinnasamy ◽  
Smitha Jayakumar ◽  
...  

Heart and kidney transplants are effective treatments for end-stage organ failure, but their long-term success is limited by graft vascular disease (GVD), the leading cause of solid organ transplant failure. This process manifests as concentric thickening of vessel walls due to neointimal hyperplasia in the donor organ, characterized by expansion of cells, notably smooth muscle-like cells (SMLCs) and macrophages (MPs), which accumulate, proliferate, and eventually occlude the lumen of arteries. Our lab recently reported that loss of colony stimulating factor-1 (CSF1) expression in either donor or recipient mice limits GVD, and showed that SMLCs isolated from neointimal lesions express high levels of CSF1 and its receptor, CSF1R. While CSF1-mediated activation of CSF1R has been studied extensively in MP biology, its role in SMLCs and GVD has not been well characterized. We hypothesize that CSF1R activation in neointimal MPs and SMCs occurs after organ transplantation and promotes the development of GVD. To test this idea, carotid arteries from 8-12 week old C57/B6J male mice were transplanted orthotopically into female or male mice. At day 30 post transplantation, sex-mismatched transplants developed significant neointimal lesions not seen in sex-matched controls. Neointimal, adventitial, and to a lesser extent medial cells were positive for CSF1R and CD68, which were scarcely detected in control untransplanted arteries. Cells in the media of transplanted vessels co-stained for smooth muscle alpha actin (SMA) and calponin. SMA-positive cells were found in neointimal lesions, with few cells co-expressing calponin. Proliferation, assessed by Phospho-histone H3 staining, was evident in cells of uncertain origin in the media and neointima. In conclusion, H-Y antigen-driven histoincompatibility in this mouse transplant model yielded vascular lesions that resemble GVD, with significant neointima formation, preservation of medial cells, and evidence of CSF1R expression and of cell proliferation. Future studies will focus on lineage tracing of smooth muscle and myeloid cells to evaluate neointimal cell origins, plus genetic depletion of CSF1R in these cell lineages to determine the requirement for CSF1R expression in the development of GVD.

2014 ◽  
Vol 34 (4) ◽  
pp. 877-886 ◽  
Author(s):  
Allison Ostriker ◽  
Henrick N. Horita ◽  
Joanna Poczobutt ◽  
Mary C.M. Weiser-Evans ◽  
Raphael A. Nemenoff

Objective— To define the contribution of vascular smooth muscle cell (SMC)–derived factors to macrophage phenotypic modulation in the setting of vascular injury. Approach and Results— By flow cytometry, macrophages (M4) were the predominant myeloid cell type recruited to wire-injured femoral arteries, in mouse, compared with neutrophils or eosinophils. Recruited macrophages from injured vessels exhibited a distinct expression profile relative to circulating mononuclear cells (peripheral blood monocytes; increased: interleukin-6, interleukin-10, interleukin-12b, CC chemokine receptor [CCR]3, CCR7, tumor necrosis factor-α, inducible nitric oxide synthase, arginase 1; decreased: interleukin-12a, matrix metalloproteinase [MMP]9). This phenotype was recapitulated in vitro by maturing rat bone marrow cells in the presence of macrophage-colony stimulating factor and 20% conditioned media from cultured rat SMC (sMφ) compared with maturation in macrophage-colony stimulating factor alone (M0). Recombinant transforming growth factor (TGF)-β1 recapitulated the effect of SMC conditioned media. Macrophage maturation studies performed in the presence of a pan-TGF-β neutralizing antibody, a TGF-β receptor inhibitor, or conditioned media from TGF-β–depleted SMCs confirmed that the SMC-derived factor responsible for macrophage activation was TGF-β. Finally, the effect of SMC-mediated macrophage activation on SMC biology was assessed. SMCs cocultured with sMφ exhibited increased rates of proliferation relative to SMCs cultured alone or with M0 macrophages. Conclusions— SMC-derived TGF-β modulates the phenotype of maturing macrophages in vitro, recapitulating the phenotype found in vascular lesions in vivo. SMC-modulated macrophages induce SMC activation to a greater extent than control macrophages.


2014 ◽  
Vol 7 (1) ◽  
pp. 26-32 ◽  
Author(s):  
William D. Paulson

The vasculopathy of ESRD affects both arteries and veins. The arteries develop arteriosclerosis, which is largely a disease of the media characterized by increased collagen content, calcification, and both hypertrophy and hyperplasia of vascular smooth muscle cells. Veins may exhibit increased width of the intimal and medial layers, and may develop neointimal hyperplasia and calcification. Successful fistula maturation depends upon dilatation and remodeling of the artery and vein, but the stiff and thickened vessels of ESRD patients may respond poorly to signals that promote these adaptations. There is intense interest in accurately predicting fistula maturation outcome and preventing maturation failure. However, definitive criteria for preoperative testing of vessel elasticity have not yet been established. Tests that are adopted for widespread clinical use will need to be easy to apply - a standard that many of these tests may not meet. Finally, effective treatments are needed that prevent or reduce the stiffness of vessels. In conclusion, although there are many promising developments in this emerging field, effective methods of predicting fistula maturation outcome and preventing maturation failure remain to be established.


Author(s):  
Satyesh K. Sinha ◽  
Aika Miikeda ◽  
Zachary Fouladian ◽  
Margarete Mehrabian ◽  
Chantle Edillor ◽  
...  

Objective: Previous studies have shown that deficiency of M-CSF (macrophage colony-stimulating factor; or CSF1 [colony stimulating factor 1]) dramatically reduces atherosclerosis in hyperlipidemic mice. We characterize the underlying mechanism and investigate the relevant sources of CSF1 in lesions. Approach and Results: We quantitatively assessed the effects of CSF1 deficiency on macrophage proliferation and apoptosis in atherosclerotic lesions. Staining of aortic lesions with markers of proliferation, Ki-67 and bromodeoxyuridine, revealed around 40% reduction in CSF1 heterozygous (Csf1±) as compared with WT (wild type; Csf1 +/+ ) mice. Similarly, staining with a marker of apoptosis, activated caspase-3, revealed a 3-fold increase in apoptotic cells in Csf1± mice. Next, we determined the cellular sources of CSF1 contributing to lesion development. Cell-specific deletions of Csf1 in smooth muscle cells using SM22α-Cre (smooth muscle protein 22-alpha-Cre) reduced lesions by about 40%, and in endothelial cells, deletions with Cdh5-Cre (VE-cadherin-Cre) reduced lesions by about 30%. Macrophage-specific deletion with LysM-Cre (lysozyme M-Cre), on the other hand, did not significantly reduce lesions size. Transplantation of Csf1 null (Csf1 −/ − ) mice bone marrow into Csf1 +/+ mice reduced lesions by about 35%, suggesting that CSF1 from hematopoietic cells other than macrophages contributes to atherosclerosis. None of the cell-specific knockouts affected circulating CSF1 levels, and only the smooth muscle cell deletions had any effect on the percentage monocytes in the circulation. Also, Csf1± mice did not exhibit significant differences in Ly6C high /Ly6C low monocytes as compared with Csf1 +/+ . Conclusions: CSF1 contributes to both macrophage proliferation and survival in lesions. Local CSF1 production by smooth muscle cell and endothelial cell rather than circulating CSF1 is the primary driver of macrophage expansion in atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document