scholarly journals Perivascular Adipose Tissue Regulates Vascular Function by Targeting Vascular Smooth Muscle Cells

2020 ◽  
Vol 40 (5) ◽  
pp. 1094-1109 ◽  
Author(s):  
Lin Chang ◽  
Minerva T. Garcia-Barrio ◽  
Y. Eugene Chen

Adipose tissues are present at multiple locations in the body. Most blood vessels are surrounded with adipose tissue which is referred to as perivascular adipose tissue (PVAT). Similarly to adipose tissues at other locations, PVAT harbors many types of cells which produce and secrete adipokines and other undetermined factors which locally modulate PVAT metabolism and vascular function. Uncoupling protein-1, which is considered as a brown fat marker, is also expressed in PVAT of rodents and humans. Thus, compared with other adipose tissues in the visceral area, PVAT displays brown-like characteristics. PVAT shows a distinct function in the cardiovascular system compared with adipose tissues in other depots which are not adjacent to the vascular tree. Growing and extensive studies have demonstrated that presence of normal PVAT is required to maintain the vasculature in a functional status. However, excessive accumulation of dysfunctional PVAT leads to vascular disorders, partially through alteration of its secretome which, in turn, affects vascular smooth muscle cells and endothelial cells. In this review, we highlight the cross talk between PVAT and vascular smooth muscle cells and its roles in vascular remodeling and blood pressure regulation.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1485
Author(s):  
Adrian Sowka ◽  
Pawel Dobrzyn

Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin’s structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.


2021 ◽  
Vol 16 (2) ◽  
pp. 025016
Author(s):  
Martina Travnickova ◽  
Nikola Slepickova Kasalkova ◽  
Antonin Sedlar ◽  
Martin Molitor ◽  
Jana Musilkova ◽  
...  

2018 ◽  
Author(s):  
Charlene Watterston ◽  
Lei Zeng ◽  
Abidemi Onabadejo ◽  
Sarah J Childs

AbstractVascular smooth muscle cells (vSMC) are essential to the integrity of blood vessels, and therefore an attractive target of therapeutics aimed at improving vascular function. Smooth muscle cells are one of the few cell types that maintain plasticity and can switch phenotypes from differentiated (contractile) to de-differentiated (synthetic) and vice versa. As small regulatory transcripts, miRNAs act as genetic ‘fine tuners’ of posttranscriptional events and can act as genetic switches promoting phenotypic switching. The microRNAmiR26atargets the BMP signalling effector,smad1. We show that loss ofmiR26leads to hemorrhage (a loss of vascular stability)in vivo, suggesting altered vascular differentiation. Reduction inmiR26alevels increasessmad1mRNA and phospho-Smad1 (pSmad1) levels. We show that increasing BMP signalling by overexpression ofsmad1also leads to hemorrhage and that normalization of Smad1 levels through double knockdown ofmiR26andsmad1rescues hemorrhage suggesting a direct relationship betweenmiR26andsmad1and vascular stability. Using a BMP genetic reporter and pSmad1 staining we show that the effect ofmiR26on vascular instability is non-autonomous; BMP signalling is active in embryonic endothelial cells, but not in smooth muscle cells. Nonetheless, increased BMP signalling due to loss ofmiR26results in an increase inacta2-expressing smooth muscle cell numbers and promotes a differentiated smooth muscle morphology. Taken together our data suggests thatmiR26modulates BMP signalling in endothelial cells and indirectly promotes a differentiated smooth muscle phenotype. Our data also suggests that crosstalk from BMP-responsive endothelium to smooth muscle is important for its differentiation.


Author(s):  
Y. Uehara ◽  
T. Komuro ◽  
J. Desaki

Although subcellular organization of vascular smooth muscle cells and pericytes have been described by a number of authors, the precise overall structure of these cells has not been revealed at the fine structural level.In order to extend our knowledge in understanding of vascular function, the present paper deals the three dimensional organization of these cells as studied with a transmission EM using serial sections and with a scanning EM using materials from which connective tissue elements are removed.For the reconstruction study, arterioles ranging in diameter from l0um to 25um are selected from the hamster skeletal muscle and the rat pancreas.Fig. 1. demonstrates an example of the reconstructed model of the arteriole smooth muscle cell. Here the muscle cell takes a spiral form which coils nearly twice around the endothelial column. The shape and disposition of the muscle cells gradually become to be irregular towards the capillary bed.


2010 ◽  
Vol 2010 ◽  
pp. 1-26 ◽  
Author(s):  
Giovanni Anfossi ◽  
Isabella Russo ◽  
Gabriella Doronzo ◽  
Alice Pomero ◽  
Mariella Trovati

Visceral obesity is a relevant pathological condition closely associated with high risk of atherosclerotic vascular disease including myocardial infarction and stroke. The increased vascular risk is related also to peculiar dysfunction in the endocrine activity of adipose tissue responsible of vascular impairment (including endothelial dysfunction), prothrombotic tendency, and low-grade chronic inflammation. In particular, increased synthesis and release of different cytokines, including interleukins and tumor necrosis factor-α(TNF-α), and adipokines—such as leptin—have been reported as associated with future cardiovascular events. Since vascular cell dysfunction plays a major role in the atherothrombotic complications in central obesity, this paper aims at focusing, in particular, on the relationship between platelets and vascular smooth muscle cells, and the impaired secretory pattern of adipose tissue.


2012 ◽  
Vol 32 (12) ◽  
pp. 2171-2180 ◽  
Author(s):  
Saara Tikka ◽  
Yan Peng Ng ◽  
Giuseppe Di Maio ◽  
Kati Mykkänen ◽  
Maija Siitonen ◽  
...  

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary vascular dementia caused by mutations in NOTCH3 gene. Pathology is manifested in small- and middle-sized arteries throughout the body, though primarily in cerebral white matter. Hemodynamics is altered in CADASIL and NOTCH3 is suggested to regulate actin filament polymerization and thereby vascular tone. We analyzed NOTCH3 expression and morphology of actin cytoskeleton in genetically genuine cultured human CADASIL vascular smooth muscle cells (VSMCs) (including a cell line homozygous for p. Arg133Cys mutation) derived from different organs, and in control VSMCs with short hairpin RNA (shRNA)-silenced NOTCH3. NOTCH3 protein level was higher in VSMCs derived from adult than newborn arteries in both CADASIL and control VSMCs. CADASIL VSMCs showed altered actin cytoskeleton including increased branching and node formation, and more numerous and smaller adhesion sites than control VSMCs. Alterations in actin cytoskeleton in shRNA-silenced VSMCs were similar as in CADASIL VSMCs. Severity of the alterations in actin filaments corresponded to NOTCH3 expression level being most severe in VSMCs derived from adult cerebral arteries. These observations suggest that hypomorphic NOTCH3 activity causes alterations in actin organization in CADASIL. Furthermore, arteries from different organs have specific characteristics, which modify the effects of the NOTCH3 mutation and which is one explanation for the exceptional susceptibility of cerebral white matter arteries.


2020 ◽  
Vol 2 (1) ◽  
pp. R1-R15
Author(s):  
Makeda Stephenson ◽  
Daniel H Reich ◽  
Kenneth R Boheler

The reproducible generation of human-induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (vSMCs) in vitro has been critical to overcoming many limitations of animal and primary cell models of vascular biology and disease. Since this initial advance, research in the field has turned toward recapitulating the naturally occurring subtype specificity found in vSMCs throughout the body, and honing functional models of vascular disease. In this review, we summarize vSMC derivation approaches, including current phenotype and developmental origin-specific methods, and applications of vSMCs in functional disease models and engineered tissues. Further, we discuss the challenges of heterogeneity in hiPSC-derived tissues and propose approaches to identify and isolate vSMC subtype populations.


Sign in / Sign up

Export Citation Format

Share Document