scholarly journals Adipocytokines in Atherothrombosis: Focus on Platelets and Vascular Smooth Muscle Cells

2010 ◽  
Vol 2010 ◽  
pp. 1-26 ◽  
Author(s):  
Giovanni Anfossi ◽  
Isabella Russo ◽  
Gabriella Doronzo ◽  
Alice Pomero ◽  
Mariella Trovati

Visceral obesity is a relevant pathological condition closely associated with high risk of atherosclerotic vascular disease including myocardial infarction and stroke. The increased vascular risk is related also to peculiar dysfunction in the endocrine activity of adipose tissue responsible of vascular impairment (including endothelial dysfunction), prothrombotic tendency, and low-grade chronic inflammation. In particular, increased synthesis and release of different cytokines, including interleukins and tumor necrosis factor-α(TNF-α), and adipokines—such as leptin—have been reported as associated with future cardiovascular events. Since vascular cell dysfunction plays a major role in the atherothrombotic complications in central obesity, this paper aims at focusing, in particular, on the relationship between platelets and vascular smooth muscle cells, and the impaired secretory pattern of adipose tissue.

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1485
Author(s):  
Adrian Sowka ◽  
Pawel Dobrzyn

Studies of adipose tissue biology have demonstrated that adipose tissue should be considered as both passive, energy-storing tissue and an endocrine organ because of the secretion of adipose-specific factors, called adipokines. Adiponectin is a well-described homeostatic adipokine with metabolic properties. It regulates whole-body energy status through the induction of fatty acid oxidation and glucose uptake. Adiponectin also has anti-inflammatory and antidiabetic properties, making it an interesting subject of biomedical studies. Perivascular adipose tissue (PVAT) is a fat depot that is conterminous to the vascular wall and acts on it in a paracrine manner through adipokine secretion. PVAT-derived adiponectin can act on the vascular wall through endothelial cells and vascular smooth muscle cells. The present review describes adiponectin’s structure, receptors, and main signaling pathways. We further discuss recent studies of the extent and nature of crosstalk between PVAT-derived adiponectin and endothelial cells, vascular smooth muscle cells, and atherosclerotic plaques. Furthermore, we argue whether adiponectin and its receptors may be considered putative therapeutic targets.


2021 ◽  
Vol 16 (2) ◽  
pp. 025016
Author(s):  
Martina Travnickova ◽  
Nikola Slepickova Kasalkova ◽  
Antonin Sedlar ◽  
Martin Molitor ◽  
Jana Musilkova ◽  
...  

2020 ◽  
Vol 40 (5) ◽  
pp. 1094-1109 ◽  
Author(s):  
Lin Chang ◽  
Minerva T. Garcia-Barrio ◽  
Y. Eugene Chen

Adipose tissues are present at multiple locations in the body. Most blood vessels are surrounded with adipose tissue which is referred to as perivascular adipose tissue (PVAT). Similarly to adipose tissues at other locations, PVAT harbors many types of cells which produce and secrete adipokines and other undetermined factors which locally modulate PVAT metabolism and vascular function. Uncoupling protein-1, which is considered as a brown fat marker, is also expressed in PVAT of rodents and humans. Thus, compared with other adipose tissues in the visceral area, PVAT displays brown-like characteristics. PVAT shows a distinct function in the cardiovascular system compared with adipose tissues in other depots which are not adjacent to the vascular tree. Growing and extensive studies have demonstrated that presence of normal PVAT is required to maintain the vasculature in a functional status. However, excessive accumulation of dysfunctional PVAT leads to vascular disorders, partially through alteration of its secretome which, in turn, affects vascular smooth muscle cells and endothelial cells. In this review, we highlight the cross talk between PVAT and vascular smooth muscle cells and its roles in vascular remodeling and blood pressure regulation.


2019 ◽  
Vol 56 ◽  
pp. 28-34 ◽  
Author(s):  
E. L. Nasonov ◽  
T. V. Popkova

Atherosclerosis is now considered as chronic inflammatory vascular disease connected to «pathological» activation of innate and adaptive immunity, characterized by lipid deposition, leukocyte infiltration and proliferation of vascular smooth muscle cells. Subclinical (low grade) inflammation plays fundamental role at all stages of atherosclerotic process progression and determines cardiovascular catastrophes development and mortality. Proinflammatory cytokines including interleukin (IL) 1, IL6, tumor necrosis factor α (TNFα), IL17, IL18, IL27, IL33, IL37 tightly interacting within cytokine network occupy an important place among numerous mediators participating in immunopathogenesis of atherosclerosis and rheumatoid arthritis. IL1β playing an important role in the development of many acute and chronic immunoinflammatory diseases attracts particular attention. IL1β significance in the development of atherosclerosis is determined by many mechanisms including procoagulant activity, enhancement of monocytes and leucocytes adhesion to vascular endothelium, vascular smooth muscle cells growth and others. Fundamental role of inflammation in the development of atherosclerosis is well proved in investigations of anti-atherosclerotic effect of canakinumab. Randomized placebo-controlled trial CANTOS (Canakinumab ANti-inflammatory Thrombosis Otcomes Study) assessing efficacy of canakinumab as new tool for secondary prophylaxis cardiovascular complications in general population of patients with severe atherosclerotic vascular damage. CANTOS results in combination with accumulated in rheumatology data on cardiovascular effects of anti-inflammatory drugs are of great importance for personification of approach to secondary prophylaxis of caused by atherosclerosis cardiovascular complications. They also contribute to the development of inflammatory theory of atherosclerosis pathogenesis in the whole.


Sign in / Sign up

Export Citation Format

Share Document