Abstract 710: Notch1 Receptor Enhances Myocyte Differentiation of Cardiac Progenitor Cells and Myocardial Regeneration After Infarction

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Alessandro Boni ◽  
Angelo Nascimbene ◽  
Robert Siggins ◽  
Konrad Urbanek ◽  
Katsuya Amano ◽  
...  

Cardiac progenitor cells (CPCs) have been identified in the adult heart. However, the molecular mechanisms involved in the commitment of CPCs to the myocyte lineage remain to be determined. Notch-1 is a transmembrane receptor activated by the DSL family of ligands which include Jagged1 and Delta-4. Upon ligand binding, the activated receptor undergoes cleavage by γ-secretase, and its intracellular portion (Notch intracellular domain, NICD) is released, translocates to the nucleus and exerts its function as a transcriptional regulator. The objective of this study was to determine whether the components of the Notch pathway are present in the CPCs of the adult mammalian heart and whether activation of the Notch-1 receptor promotes the differentiation of CPCs into myocytes. For this purpose, c-kit-positive CPCs were isolated from the mouse heart and analyzed by FACS and immunocytochemistry. Notch-1 receptor was detected in ~50% of c-kit-positive CPCs. CPCs were then plated on culture dishes coated with immobilized Jagged1 or Delta-4 and maintained in low-serum medium. Additional groups of cells were similarly exposed to the ligands but were also treated with γ-secretase inhibitor. After 5 days in culture, the number of CPCs was markedly lower in the presence of the Notch ligands and significantly higher in the presence of the γ-secretase inhibitor. After 8 days in culture, cells became confluent and did not express any longer c-kit. With respect to cells treated with the γ-secretase inhibitor, exposure to Jagged1 and Delta-4 resulted respectively in a 10-fold and 20-fold increase in the fraction of CPCs positive for Nkx2.5. These findings were consistent with a positive effect of Notch on CPC differentiation and Nkx2.5 upregulation. To establish whether Notch influenced cardiomyogenesis in vivo, infarcted mice were treated for 11 days with the γ-secretase inhibitor. The regenerative response of the infarcted heart, defined by the percentage of BrdU-positive myocytes distributed in the border zone, was 50% lower in animals that received the γ-secretase inhibitor. Thus, Notch1 modulates CPC differentiation in vitro and myocardial regeneration in vivo after infarction.

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Liu Yang ◽  
Yang Yu ◽  
Baron Arnone ◽  
Chan Boriboun ◽  
Jiawei Shi ◽  
...  

Background: Long non-coding RNAs (lncRNAs) are an emerging class of RNAs with no or limited protein-coding capacity; a few of which have recently been shown to regulate critical biological processes. Myocardial infarction-associated transcript (MIAT) is a conserved mammalian lncRNA, and single nucleotide polymorphisms (SNPs) in 6 loci of this gene have been identified to be strongly associated with the incidence and severity of human myocardial infarction (MI). However, whether and how MIAT impacts on the pathogenesis of MI is unknown. Methods & Results: Quantitative RT-PCR analyses revealed that MIAT is expressed in neonatal mouse heart and to a lesser extent in adult heart. After surgical induction of MI in adult mice, MIAT starts to increase in 2 hours, peaks at 6 hours in atria and 12 hours in ventricles, and decreases to baseline at 24 hours. Fluorescent in situ hybridization (FISH) revealed a slight increase in the number of MIAT-expressing cells in the infarct border zone at 12 hours post-MI. Moreover, qRT-PCR analyses of isolated cardiac cells revealed that MIAT is predominantly expressed in cardiosphere-derived cardiac progenitor cells (CPCs). Treatment of CPCs with H 2 O 2 led to a marked upregulation of MIAT, while knockdown (KD) of MIAT resulted in a significantly impaired cell survival in vitro with H 2 O 2 treatment and in vivo after administered in the ischemic/reperfused heart. Notably, bioinformatics prediction and RNA immunoprecipitation identified FUS (fused in sarcoma) as a novel MIAT-interacting protein. FUS-KD CPCs displayed reduced cell viability and increased apoptosis under oxidative stress. Furthermore, MIAT overexpression enhanced survival of WT CPCs but not FUS-KD CPCs, suggesting that the protective role of MIAT is mediated by FUS. Conclusions: MIAT interacts with FUS to protect CPCs from oxidative stress-induced cell death.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Yu Misao ◽  
Michael E Davis ◽  
Vincent E Segers ◽  
Marcello Rota ◽  
Grazia Esposito ◽  
...  

Cardiac progenitor cells (CPCs) possess the IGF-1-IGF-1 receptor system which promotes cell survival, growth and differentiation. Therefore, we tested whether the local injection of CPCs together with the prolonged release of IGF-1 by self-assembling peptides enhanced myocardial regeneration after infarction. The possibility was raised that this strategy may improve cardiac repair by potentiating the regenerative response of the delivered and resident CPCs. Myocardial infarction was induced in rats and after the injection of 100,000 clonogenic immunocompatible EGFP-positive-CPCs in the border zone, biotinylated IGF-1 nanofibers were delivered to the same region. Four groups of animals were used for comparison: infarcted hearts injected with peptide only, infarcted hearts injected with CPCs only, untreated infarcted hearts and sham operated hearts. All animals received BrdU throughout the 1 month experimental period for the recognition of newly formed cells. Infarct size, ~60%, was comparable in the 4 groups. Although all treated-infarcted hearts showed a reduction in chamber volume and an increase in wall-thickness-to-chamber volume ratio and LV mass-to-chamber volume ratio, the combined treatment had the most positive effect. Similarly, LVEDP, LVDP, and dP/dt improved predominantly in infarcted hearts exposed to CPCs and IGF-1 which possessed a larger number of regenerated myocytes. The newly formed BrdU-positive myocytes consisted of EGFP-positive and EGFP-negative cells. The former category corresponded to the progeny of the injected CPCs and the latter was the product of differentiation of resident CPCs. The regenerated myocytes showed a high degree of differentiation; 20% of myocytes had a volume 2,000 –10,000 μm 3 . This level of maturation was not observed in infarcted hearts treated only with CPCs or IGF1 releasing peptides. Also, administration of CPCs and IGF-1 led to the formation of numerous resistance arterioles and capillary structures within the regenerated myocardium. Thus, the combination of CPCs and IGF-1 biotinylated nanofibers results in an unprecedented degree of myocardial recovery of structure and function after infarction. Importantly, the regenerated myocytes acquire the differentiated adult phenotype.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Kathleen M Broughton ◽  
Bingyan J Wang ◽  
Taeyong Kim ◽  
Sadia Mohsin ◽  
Dieter Kubli ◽  
...  

Introduction: Discovery of endogenous cardiac progenitor cells (CPC) prompted intense research efforts in multiple experimental animal models and clinical trials for heart failure treatment. Our lab identified a fundamental difference in ploidy content between rodent (rat, mouse) CPCs possessing mononuclear tetraploid (4n) chromosome content versus large mammal (human, swine) CPCs with mononuclear diploid (2n) content. Ploidy differences raise provocative questions regarding translational applicability of myocardial regeneration in rodents as polyplodization often correlates with enhanced regenerative potential. Hypothesis: Mononuclear chromatin duplication in CPCs improves regenerative capacity of the heart through higher stress resistance and overriding senescence cell-cycle arrest. Methods and Results: Ploidy of cultured CPCs is consistent and stable ploidy content over increased passages with samples from eight humans, two swine strains, six mouse strains, and seven rat clonal lines as determined by karyotype, confocal microscope and flow cytometry analyses. In situ ploidy analysis of CPCs reveals diploid content in human tissue and a mixture of mononuclear diploid and tetraploid nuclei in mouse, confirmed using freshly isolated Lin- c-kit+ CPCs. Tetraploid nuclear phenotype of murine CPCs is markedly different from predominantly diploid (2n) murine c-kit+ cells located in other tissues such as intestine and bone marrow. Higher ploidy content concurrent with expansion of the CPC pool are evident in the border zone at seven days post-infarction in adult FVB mice compared to age and gender matched non-injured hearts. Conclusion: Tetraploid c-kit+ cells found within the rodent heart may contribute to species-specific characteristics of stem cells and myocardial regenerative capacity. Future studies will focus upon the biological properties of diploid versus tetraploid CPCs and advantages of polyploid content for mediating myocardial regeneration.


2021 ◽  
Vol 22 (3) ◽  
pp. 1390
Author(s):  
Julia Mester-Tonczar ◽  
Patrick Einzinger ◽  
Johannes Winkler ◽  
Nina Kastner ◽  
Andreas Spannbauer ◽  
...  

Circular RNAs (circRNAs) are crucial in gene regulatory networks and disease development, yet circRNA expression in myocardial infarction (MI) is poorly understood. Here, we harvested myocardium samples from domestic pigs 3 days after closed-chest reperfused MI or sham surgery. Cardiac circRNAs were identified by RNA-sequencing of rRNA-depleted RNA from infarcted and healthy myocardium tissue samples. Bioinformatics analysis was performed using the CIRIfull and KNIFE algorithms, and circRNAs identified with both algorithms were subjected to differential expression (DE) analysis and validation by qPCR. Circ-RCAN2 and circ-C12orf29 expressions were significantly downregulated in infarcted tissue compared to healthy pig heart. Sanger sequencing was performed to identify the backsplice junctions of circular transcripts. Finally, we compared the expressions of circ-C12orf29 and circ-RCAN2 between porcine cardiac progenitor cells (pCPCs) that were incubated in a hypoxia chamber for different time periods versus normoxic pCPCs. Circ-C12orf29 did not show significant DE in vitro, whereas circ-RCAN2 exhibited significant ischemia-time-dependent upregulation in hypoxic pCPCs. Overall, our results revealed novel cardiac circRNAs with DE patterns in pCPCs, and in infarcted and healthy myocardium. Circ-RCAN2 exhibited differential regulation by myocardial infarction in vivo and by hypoxia in vitro. These results will improve our understanding of circRNA regulation during acute MI.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Pratik A Lalit ◽  
Max R Salick ◽  
Daryl O Nelson ◽  
Jayne M Squirrell ◽  
Christina M Shafer ◽  
...  

Several studies have reported reprogramming of fibroblasts (Fibs) to induced cardiomyocytes, and we have recently reprogrammed mouse Fibs to induced cardiac progenitor cells (iCPCs), which may be more favorable for cardiac repair because of their expandability and multipotency. Adult cardiac (AC), lung and tail-tip Fibs from an Nkx2.5-EYFP reporter mouse were reprogrammed using a combination of five defined factors into iCPCs. Transcriptome and immunocytochemistry analysis revealed that iCPCs were cardiac mesoderm-restricted progenitors that expressed CPC markers including Nkx2.5, Gata4, Irx4, Tbx5, Cxcr4, Flk1 etc. iCPCs could be extensively expanded (over 30 passages) while maintaining multipotency to differentiate in vitro into cardiac lineage cells including cardiomyocytes (CMs), smooth muscle cells and endothelial cells. iCPC derived CMs upon co-culture with mESC-derived CMs formed intercellular gap junctions, exhibited calcium transients, and contractions. The purpose of this study was to determine the in vivo potency of iCPCs. Given that the Nkx2.5-EYFP reporter identifies embryonic CPCs, we first tested the embryonic potency of iCPCs using an ex vivo whole embryo culture model injecting cells into the cardiac crescent (CC) of E8.5 mouse embryos and culturing for 24 to 48 hours. GFP labeled AC Fibs were first tested and live imaging revealed that after 24 hours these cells were rejected from the embryo proper and localized to the ecto-placental cone. In contrast, iCPCs reprogrammed from AC Fibs when injected into the CC localized to the developing heart tube and differentiated into MLC2v, αMHC and cardiac actin expressing CMs. Further we injected iCPCs into infarcted adult mouse hearts and determined their regenerative potential after 1-4 wks. The iCPCs significantly improved survival (p<0.01 Mantel-Cox test) in treated animals (75%) as compared to control (11%). Immunohistochemistry revealed that injected iCPCs localized to the scar area and differentiated into cardiac lineage cells including CMs (cardiac actin). These results indicate that lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for cardiac regenerative therapy as well as drug discovery and disease modeling.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2571
Author(s):  
Cristina Prat-Vidal ◽  
Verónica Crisóstomo ◽  
Isabel Moscoso ◽  
Claudia Báez-Díaz ◽  
Virginia Blanco-Blázquez ◽  
...  

Human cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI. We have validated porcine cardiac progenitor cells (pCPC) and lentiviral vectors to overexpress IGF-1 (co-expressing eGFP) and HGF (co-expressing mCherry). pCPC were transduced and IGF1-eGFPpos and HGF-mCherrypos populations were purified by cell sorting and further expanded. Overexpression of IGF-1 has a limited impact on pCPC expression profile, whereas results indicated that pCPC-HGF-mCherry cultures could be counter selecting high expresser cells. In addition, pCPC-IGF1-eGFP showed a higher cardiogenic response, evaluated in co-cultures with decellularized extracellular matrix, compared with native pCPC or pCPC-HGF-mCherry. In vivo intracoronary co-administration of pCPC-IGF1-eGFP and pCPC-HFG-mCherry (1:1; 40 × 106/animal), one week after the induction of an MI model in swine, revealed no significant improvement in cardiac function.


2019 ◽  
Vol 20 (23) ◽  
pp. 6037 ◽  
Author(s):  
Karin Jennbacken ◽  
Fredrik Wågberg ◽  
Ulla Karlsson ◽  
Jerry Eriksson ◽  
Lisa Magnusson ◽  
...  

Paracrine factors can induce cardiac regeneration and repair post myocardial infarction by stimulating proliferation of cardiac cells and inducing the anti-fibrotic, antiapoptotic, and immunomodulatory effects of angiogenesis. Here, we screened a human secretome library, consisting of 923 growth factors, cytokines, and proteins with unknown function, in a phenotypic screen with human cardiac progenitor cells. The primary readout in the screen was proliferation measured by nuclear count. From this screen, we identified FGF1, FGF4, FGF9, FGF16, FGF18, and seven additional proteins that induce proliferation of cardiac progenitor cells. FGF9 and FGF16 belong to the same FGF subfamily, share high sequence identity, and are described to have similar receptor preferences. Interestingly, FGF16 was shown to be specific for proliferation of cardiac progenitor cells, whereas FGF9 also proliferated human cardiac fibroblasts. Biosensor analysis of receptor preferences and quantification of receptor abundances suggested that FGF16 and FGF9 bind to different FGF receptors on the cardiac progenitor cells and cardiac fibroblasts. FGF16 also proliferated naïve cardiac progenitor cells isolated from mouse heart and human cardiomyocytes derived from induced pluripotent cells. Taken together, the data suggest that FGF16 could be a suitable paracrine factor to induce cardiac regeneration and repair.


2020 ◽  
Vol 1867 (3) ◽  
pp. 118559 ◽  
Author(s):  
Ruben A. Alexanian ◽  
Kaushiki Mahapatra ◽  
Di Lang ◽  
Ravi Vaidyanathan ◽  
Yogananda S. Markandeya ◽  
...  

2018 ◽  
Vol 47 (2) ◽  
pp. 579-589 ◽  
Author(s):  
Wei Li ◽  
Yaojun Lu ◽  
Ruijuan Han ◽  
Qiang Yue ◽  
Xiurong Song ◽  
...  

Background/Aims: The transplantation of cardiac progenitor cells (CPCs) improves neovascularization and left ventricular function after myocardial infarction (MI). The bone morphogenetic protein antagonist Gremlin 2 (Grem2) is required for early cardiac development and cardiomyocyte differentiation. The present study examined the role of Grem2 in CPC differentiation and cardiac repair. Methods: To determine the role of Grem 2 during CPC differentiation, c-Kit+ CPCs were cultured in differentiation medium for different times, and Grem2, Notch1 and Jagged1 expression was determined by RT-PCR and western blotting. Short hairpin RNA was used to silence Grem2 expression, and the expression of cardiomyocyte surface markers was assessed by RT-PCR and immunofluorescence staining. In vivo experiments were performed in a mouse model of left anterior descending coronary artery ligation-induced MI. Results: CPC differentiation upregulated Grem2 expression and activated the Notch1 pathway. Grem2 knockdown inhibited cardiomyocyte differentiation, and this effect was similar to that of Notch1 pathway inhibition in vitro. Jagged1 overexpression rescued the effects of Grem2 silencing. In vivo, Grem2 silencing abolished the protective effects of CPC injection on cardiac fibrosis and function. Conclusions: Grem2 regulates CPC cardiac differentiation by modulating Notch1 signaling. Grem2 enhances the protective effect of CPCs on heart function in a mouse model of MI, suggesting its potential as the rapeutic protein for cardiac repair.


Sign in / Sign up

Export Citation Format

Share Document