Abstract 329: N-acetylcyteine Alleviate Inflammasome-Induced Myocardial Pyroptosis After Successful Resuscitation in a Rat Model of Cardiac Arrest

Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Fenglian He

Introduction: Previous studies have demonstrated that pyroptosis is involved in myocardial ischemia/reperfusion injury (MIRI). In addition, N-acetylcyteine (NAC) can attenuate inflammasome-induced pyroptosis during regional MIRI. In the present study, we investigated whether pyroptosis participate in global MIRI after successful resuscitation, and if it does, whether NAC can reduce inflammasome-induced pyroptosis in a rat model of cardiac arrest and resuscitation. Hypothesis: N-acetylcyteine reduces inflammasome-induced myocardial pyroptosis after successful resuscitation in a rat model of cardiac arrest. Methods: Fifteen male rats weighing 450g-550g were randomized into three groups: sham group, control group and NAC group (150 mg/kg). Ventricular fibrillation (VF) was electrically induced and untreated for 8 min. After VF, CPR was initiated for 8 mins and then defibrillation was attempted. Animals in sham group only were underwent the same operation but without inducing CA. The expressions of Nod-like receptor protein3 (NLRP3), adaptor apoptosis-associated speck-like protein (ASC), caspase-1 and gasdermin D (GSDMD) proteins were detected by western blotting at 6h following successful resuscitation. Results: All animals were resuscitated. Significantly higher levels expressions of GSDMD, NLRP3, ASC and caspase-1 were observed in control group and NAC group when compared with sham group. However, the expressions in GSDMD, NLRP3, ASC and caspase-1 were downregulated in NAC group in comparison with the control group. (Figure) Conclusion: N-acetylcyteine attenuate inflammasome-induced myocardial pyroptosis after successful resuscitation in a rat model of cardiac arrest. Figure Expressions of GSDMD, NLRP3, ASC and caspase-1 proteins, and effect of NAC on cardiac pyroptosis after successful resuscitation in a rat model of CA. (A) Representative western blotting images of GSDMD, NLRP3, ASC and caspase1 proteins in the hearts at 6h after successfully resuscitated (B) Quantitative protein analysis of GSDMD, NLRP3, ASC and caspase1 expression in three groups. The columns represent means ± SEM of three independent experiments. * p < .05

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Zhengfei Yang ◽  
Jiangang Wang ◽  
Lu Yin ◽  
Shen Zhao ◽  
Ziren Tang ◽  
...  

Introduction: Curcumin has been proven to provide potent protection of vital organs against regional ischemia reperfusion injury. In this study, we investigated the effects of curcumin on the outcomes of CPR in a rat model of cardiac arrest. Hypothesis: Curcumin reduces the severity of post-CPR myocardial dysfunction and prolong the duration of survival. Method: Sixteen male Sprague-Dawley rats weighing between 450-550g were randomized into two groups: 1) Placebo; 2) Curcumin (100 mg/kg) pre-treatment. Ventricular fibrillation (VF) was induced. After 8 mins of VF, CPR was initiated for 8 mins and defibrillation was then attempted. Myocardial function was measured by echocardiography at baseline and hourly for 4 hours following successful resuscitation. The duration of survival was observed for total 72 hours. Result: Six animals in the placebo group and seven in the curcumin group were successfully resuscitated. Post-resuscitation myocardial function was significantly impaired in all animals. However, myocardial function gradually improved 4 hours after resuscitation and was significantly better in the animals pre-treated with curcumin (Figure). Significantly shorter duration of survival of 40±29 hours was observed in the placebo group. Conclusion: In a rat model of cardiac arrest, curcuminim proves post-resuscitation myocardial dysfunction and prolongs the duration of survival.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Jingying Hou ◽  
Zhengfei Yang ◽  
Wanchun Tang

Introduction: Previous studies have indicated that lncRNA participates in regional myocardial ischemia-reperfusion injury (IRI). However, the lncRNA-miRNA-mRNA crosstalk in the global myocardial IRI, which is implicated in the pathophysiology of post-resuscitation myocardial dysfunction (PRMD), has still not been explored. Hypothesis: To identify lncRNA-miRNA-mRNA regulatory network in myocardium after successful resuscitation in a rat model of prolonged cardiac arrest. Methods: Six male Sprague Dawley rats were randomized into sham control and ventricular fibrillation (VF)-CPR groups, with three rats in each group. VF was induced and untreated for 8 minutes. Defibrillation was attempted after 8 minutes of CPR. Heart tissue was obtained at 6 hours after resuscitation and lncRNA, miRNA and mRNA expression profiles were examined by using high-throughput sequencing. LncRNA-miRNA-mRNA interaction network was predicted and constructed. Results: Numbers of differentially expressed (DE) lncRNA, miRNA and mRNA were detected (Fig 1A). LncRNAs co-located or co-expressed target mRNAs and DE mRNAs were revealed (Fig 1B). The intersection of DE mRNAs with targeted mRNA of DE miRNAs was made (Fig 1C). A total of 129 feed forward loops were predicted as lncRNA-associated ceRNA networks,with 126 lncRNA (up)-miRNA (down)-mRNA (up) and 3 lncRNA (down)-miRNA (up)-mRNA (down) (Fig 2). Conclusions: LncRNA-miRNA-mRNAs network was predicted and constructed in myocardium after successful resuscitation in a rat model of prolonged cardiac arrest. Further exploration into the specific functional roles of the ceRNA regulatory network will be conducive for the treatment of PRMD.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Fenglian He

N-acetylcysteine improves post reperfusion myocardial dysfunction in a Rat Model of Cardiac Arrest and return of spontaneous circulation Introduction: Studies have demonstrated that N-acetylcysteine (NAC) can attenuate regional myocardial ischemia/reperfusion injury and improved myocardial dysfunction. However, it is not clear whether NAC could protect post reperfusion myocardial dysfunction (PRMD) after cardiac arrest (CA) and return of spontaneous circulation (ROSC). In this study, we investigated the effect of NAC on post reperfusion myocardial dysfunction in a rat model of CA and ROSC. Hypothesis: NAC reduces the severity of PRMD in a rat model of CA and ROSC. Method: Ten healthy male Sprague-Dawley rats weighting 450g–550g were utilized, and randomly divided into two groups: 1) control group; 2) NAC group (150mg/kg). Ventricular fibrillation (VF) was induced. After 8 mins of VF, CPR was initiated for 8 mins, and defibrillation was then attempted. Myocardial function was measured by echocardiography at baseline, 2, 4 and 6 hours after successful resuscitation. Result: Except one in the control group, all animals were resuscitated. Myocardial function of post-resuscitation was significantly decreased in all animals. However, myocardial function gradually improved in animals treated with NAC when compared with those in control groups (Figure). Conclusion: In a rat model of cardiac arrest, NAC improves post-resuscitation myocardial dysfunction Figure The post-resuscitation myocardial dysfunction. BL, baseline; VF, ventricular fibrillation; CO, cardiac output; EF, ejection fraction; MPI, myocardial performance index; CPR, cardiopulmonary resuscitation; C group,control group; N group, NAC intervention group; * p < 0.05.vs. the C group.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Najah R. Hadi ◽  
Fadhil G. Yusif ◽  
Maitham Yousif ◽  
Karrar K. Jaen

Although reperfusion of an ischemic organ is essential to prevent irreversible tissue damage, it may amplify tissue injury. This study investigates the role of endogenous testosterone in myocardial ischemia reperfusion and apoptosis in male rats. Material and method. Twenty four male rats were randomized into 4 equal groups: Group (1), sham group, rats underwent the same anesthetic and surgical procedure as the control group except for LAD ligation; Group (2), Active control group, rats underwent LAD ligation; Group (3), castrated, rats underwent surgical castration, left 3wks for recovery, and then underwent LAD ligation; and Group (4), Goserelin acetate treated, rats received 3.6 mg of Goserelin 3 wks before surgery and then underwent LAD ligation. At the end of experiment, plasma cTn I, cardiac TNF-α, IL1-β, ICAM-1, and Apoptosis level were measured and histological examination was made. Results. Compared to sham group, the levels of myocardial TNF-α, IL-1β, ICAM-1, apoptosis, and plasma cTn I were significantly increased (P<0.05) in control group and all rats showed significant myocardial injury (P<0.05). Castration and Goserelin acetates significantly counteract the increase in myocardial levels of TNF-α, IL-1β, ICAM-1, plasma cTn I, and apoptosis (P<0.05) and significantly reduce (P<0.05) the severity of myocardial injury. We conclude that castration and Goserelin acetates ameliorate myocardial I/R injury and apoptosis in rats via interfering with inflammatory reactions.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Jiefeng Xu ◽  
Sen Ye ◽  
Zilong Li ◽  
Moli Wang ◽  
Zhengquan Wang ◽  
...  

Introduction: Systemic ischemia-reperfusion injury produced by CA and resuscitation can result in severe post-cardiac arrest syndrome; which includes systemic inflammatory response and multiple organ dysfunction syndrome such as acute pulmonary edema. We previously demonstrated that remote ischemic post-conditioning (RIpostC) improved post-resuscitation myocardial and cerebral function in a rat model of CA. In this study, we investigated the effects of RIpostC on inflammatory response and pulmonary edema after CPR in a porcine model. Hypothesis: RIpostC would alleviate post-resuscitation inflammatory response and pulmonary edema in a porcine model of CA. Methods: Fourteen male domestic pigs weighing 37 ± 2 kg were utilized. Ventricular fibrillation was electrically induced and untreated for 10 mins. The animals were then randomized to receive RIpostC or control. Coincident with the start of CPR, RIpostC was induced by four cycles of 5 mins of limb ischemia and then 5 mins of reperfusion. Defibrillation was attempted after 5 mins of CPR. The resuscitated animals were monitored for 4 hrs and observed for an additional 68 hrs. Results: Six of the seven animals in each group were successfully resuscitated. After resuscitation, significantly lower levels of tumor necrosis factor-α and interleukin-6 were measured in the animals that received RIpostC when compared with the control group. Post-resuscitation extra-vascular lung water index was lower in the RIpostC group than in the control group; in which the differences were significant at 2,3 and 4 hrs (Table). Conclusion: In a porcine model of CA, RIpostC significantly alleviates post-resuscitation inflammatory response and pulmonary edema.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Limei Zhang ◽  
Hanyu Liu ◽  
Lili Jia ◽  
Jingshu Lyu ◽  
Ying Sun ◽  
...  

Background. The neuronal injury and cognitive dysfunction after liver transplantation have severe effects on the prognosis and life quality of patients. Accumulating evidence suggests that both exosomes and pyroptosis could participate in hepatic ischemia-reperfusion injury (HIRI) and play key roles in neuronal death. However, the link between exosomes and neuronal pyroptosis in HIRI awaits further investigation. Methods. After establishing the HIRI rat models, we primarily studied the role of pyroptosis in hippocampal and cortical neuron injury through detecting NOD-like receptor protein 3 (NLRP3), pro-caspase-1, cleaved-caspase-1, apoptosis-associated speck-like protein containing CARD (ASC), gasdermin D (GSDMD), interleukin-1beta (IL-1β), and interleukin-18 (IL-18) expressions with western blotting, immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Then, we intravenously injected normal male rats with exosomes isolated from the sera of HIRI-challenged rats and pretreated rats with MCC950, a specific inhibitor of NLRP3, and carried out the same assay. We also detected the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) in the hippocampal and cortical tissues. Results. The results indicated that NLRP3 inflammasome and caspase-1-dependent pyroptosis were activated in the hippocampus and cortex of HIRI rats. Furthermore, serum-derived exosomes from HIRI-challenged rats not only had the ability to cross the blood-brain barrier (BBB) but also had the similar effects on neuronal pyroptosis. Moreover, ROS and MDA productions were induced in the HIRI and exosome-challenged groups. In addition, to some degree, MCC950 could alleviate HIRI-mediated hippocampal and cortical neuronal pyroptosis. Conclusion. This study experimentally demonstrated that circulating exosomes play a critical role in HIRI-mediated hippocampal and cortical injury through regulating neuronal pyroptosis.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhongzhong Liu ◽  
Xingjian Zhang ◽  
Qi Xiao ◽  
Shaojun Ye ◽  
Chin-Hui Lai ◽  
...  

Objective. Severe hepatic ischemia reperfusion injury (IRI) can result in poor short- and long-term graft outcome after transplantation. The way to improve the viability of livers from donors after circulatory death (DCD) is currently limited. The aim of the present study was to explore the protective effect of simvastatin on DCD livers and investigate the underlying mechanism. Methods. 24 male rats randomly received simvastatin or its vehicle. 30 min later, rat livers were exposed to warm ischemia in situ for 30 min. Livers were removed and cold-stored in UW solution for 24 h, subsequently reperfused for 60 min with an isolated perfused rat liver system. Liver injury was evaluated during and after warm reperfusion. Results. Pretreatment of DCD donors with simvastatin significantly decreased IRI liver enzyme release, increased bile output and ATP, and ameliorated hepatic pathological changes. Simvastatin maintained the expression of KLF2 and its protective target genes (eNOS, TM, and HO-1), reduced oxidative stress, inhibited innate immune responses and inflammation, and increased the expression of Bcl-2/Bax to suppress hepatocyte apoptosis compared to DCD control group. Conclusion. Pretreatment of DCD donors with simvastatin improves DCD livers’ functional recovery probably through a KLF2-dependent mechanism. These data suggest that simvastatin may provide a potential benefit for clinical DCD liver transplantation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Najah R. Hadi ◽  
Fadhil Al-amran ◽  
Maitham Yousif ◽  
Suhaad T. Zamil

Background. Myocardial ischemial reperfusion represents a clinically relevant problem associated with thrombolysis, angioplasty, and coronary bypass surgery. Injury of myocardium due to ischemial reperfusion includes cardiac contractile dysfunction, arrhythmias, and irreversible myocytes damage. These changes are considered to be the consequence of imbalance between the formation of oxidants and the availability of endogenous antioxidants in the heart. Objective. This study was undertaken to investigate the potential role of Simvastatin in the amelioration of myocardial I/R injury induced by ligation of coronary artery in a rat model. Materials and Methods. Adult male Swiss Albino rats were randomized into 4 equal groups. Group (1): sham group: rats underwent the same anesthetic and surgical procedures as those in the control group except ligation of LAD coronary artery, group (2): control group: rats were subjected to regional ischemia for 25 min and reperfusion for 2 hours by ligation of LAD coronary artery, group (3): control vehicle group: rats received vehicle of Simvastatin (normal saline) via IP injection and were subjected to regional ischemia for 25 min and reperfusion for 2 hours by ligation of LAD coronary artery, group (4): Simvastatin treated group: rats were pretreated with Simvastatin 1 mg/kg i.p. 1 hr before ligation of LAD coronary artery. At the end of experiment (2 hr of reperfusion), blood samples were collected from the heart for the measurement of plasma level of cardiac troponin I (cTnI). After that the heart was harvested and divided into 3 parts; one part was used for measurement of apoptosis, another part was homogenized for the measurement of tissue tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α, and the last part for histopathology study. Results. Compared with the sham group, levels of myocardial TNF-α and IL-1β, IL-6, MCP-1, and MIP-1α and plasma cTnI were increased (P<0.05). Histologically, all rats in control group showed significant (P<0.05) cardiac injury. Furthermore, all rats in control group showed significant (P<0.05) apoptosis. Simvastatin significantly counteracted the increase in myocardium level of TNF-α, IL-1B, IL-6, MCP-1 and MIP-1α, plasma cTnI, and apoptosis (P< 0.05). Histological analysis revealed that Simvastatin markedly reduced (P< 0.05) the severity of heart injury in the rats that underwent LAD ligation procedure. Conclusions. The results of the present study reveal that Simvastatin may ameliorate myocardial I/R injury in rats via interfering with inflammatory reactions and apoptosis which were induced by I/R injury.


2020 ◽  
Vol 92 (4) ◽  
Author(s):  
Hasan Riza Aydin ◽  
Cagri Akin Sekerci ◽  
Ertugrul Yigit ◽  
Hatice Kucuk ◽  
Huseyin Kocakgol ◽  
...  

Aim: To date, various molecules have been investigated to reduce the effect of renal ischemia/reperfusion (I/R) injury. However, none have yet led to clinical use. The present study aimed to investigate the protective effect of cordycepin (C) on renal I/R injury in an experimental rat model. Materials and methods: Twenty-four mature Sprague Dawley female rat was randomly divided into three groups: Sham, I/R, I/R+C. All animals underwent abdominal exploration. To induce I/R injury, an atraumatic vascular bulldog clamp was applied to the right renal pedicle for 60 minutes (ischemia) and later clamp was removed to allow reperfusion in all rats, except for the sham group. In the I/R + C group, 10 mg/kg C was administered intraperitoneally, immediately after reperfusion. After 4 hours of reperfusion, the experiment was terminated with right nephrectomy. Histological studies and biochemical analyses were performed on the right nephrectomy specimens. EGTI (endothelial, glomerular, tubulointerstitial) histopathology scoring and semi-quantitative analysis of renal cortical necrosis were used for histological analyses and superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), total oxidant status (TOS) for biochemical analyses. Results: Histopathological examination of the tissue damage revealed that all kidneys in the sham group were normal. The I/R group had higher histopathological scores than the I/R + C group. In the biochemical analysis of the tissues, SOD, MDA, TOS values were found to be statistically different in the I/R group compared to the I/R + C group (p: 0.004, 0.004, 0.001 respectively). Conclusions: Intraperitoneal cordycepin injection following ischemia preserve renal tissue against oxidative stress in a rat model of renal I/R injury.


2008 ◽  
Vol 23 (4) ◽  
pp. 378-383 ◽  
Author(s):  
Antonio Roberto Franchi Teixeira ◽  
Nilza Trindade Molan ◽  
Marta Bellodi-Privato ◽  
Ana Maria Coelho ◽  
Kátia Ramos Leite ◽  
...  

PURPOSE: To determine whether rosiglitazone-enriched diet offer protection in a classical model of liver ischemia-reperfusion injury in rats. METHODS: Two days before the experiment, rats were divided into 2 groups: Control Group (n=13) rats fed with standard diet; Rosi Group (n=13): rats fed with a powdered standard diet supplemented with rosiglitazone. The animals were submitted to liver ischemia-reperfusion by clamping the pedicle of median and left anterolateral lobes. After 1 hour of partial hepatic ischemia, the clamp was removed for reperfusion. After 2 or 24 hours (Control and Rosi Groups), blood was collected for enzymes and cytokines analysis. Ischemic and non-ischemic liver were collected for malondialdehyde analysis and histological assessment. Lungs were removed for tissue myeloperoxidase quantification. RESULTS: There were no statistical differences between groups for all analysed parameters. CONCLUSION: In this model, rosiglitazone-enriched diet did not protect liver against ischemia-reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document