scholarly journals Exosomes Mediate Hippocampal and Cortical Neuronal Injury Induced by Hepatic Ischemia-Reperfusion Injury through Activating Pyroptosis in Rats

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Limei Zhang ◽  
Hanyu Liu ◽  
Lili Jia ◽  
Jingshu Lyu ◽  
Ying Sun ◽  
...  

Background. The neuronal injury and cognitive dysfunction after liver transplantation have severe effects on the prognosis and life quality of patients. Accumulating evidence suggests that both exosomes and pyroptosis could participate in hepatic ischemia-reperfusion injury (HIRI) and play key roles in neuronal death. However, the link between exosomes and neuronal pyroptosis in HIRI awaits further investigation. Methods. After establishing the HIRI rat models, we primarily studied the role of pyroptosis in hippocampal and cortical neuron injury through detecting NOD-like receptor protein 3 (NLRP3), pro-caspase-1, cleaved-caspase-1, apoptosis-associated speck-like protein containing CARD (ASC), gasdermin D (GSDMD), interleukin-1beta (IL-1β), and interleukin-18 (IL-18) expressions with western blotting, immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Then, we intravenously injected normal male rats with exosomes isolated from the sera of HIRI-challenged rats and pretreated rats with MCC950, a specific inhibitor of NLRP3, and carried out the same assay. We also detected the levels of reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) in the hippocampal and cortical tissues. Results. The results indicated that NLRP3 inflammasome and caspase-1-dependent pyroptosis were activated in the hippocampus and cortex of HIRI rats. Furthermore, serum-derived exosomes from HIRI-challenged rats not only had the ability to cross the blood-brain barrier (BBB) but also had the similar effects on neuronal pyroptosis. Moreover, ROS and MDA productions were induced in the HIRI and exosome-challenged groups. In addition, to some degree, MCC950 could alleviate HIRI-mediated hippocampal and cortical neuronal pyroptosis. Conclusion. This study experimentally demonstrated that circulating exosomes play a critical role in HIRI-mediated hippocampal and cortical injury through regulating neuronal pyroptosis.

2021 ◽  
Vol 14 ◽  
Author(s):  
Yanxia Fei ◽  
Jiali Shao ◽  
Ge Huang ◽  
Lijuan Wang ◽  
Shuangfa Zou ◽  
...  

Background and Objective: Hepatic ischemia-reperfusion injury (HIRI) results in serious complications after liver resection and transplantation. Edaravone (ED) has a protective effect on IRI. This study was designed to evaluate whether ED could protect the liver of rats from HIRI injury and explored its exosomal miRNA-related mechanism. Methods: The sham group, hepatic ischemia/reperfusion (IR group), and hepatic ischemia/reperfusion + edaravone (ED group) models were established. We determined the protective effect of ED by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), superoxide dismutase (SOD); enzyme-linked immunosorbent assay for tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β); hematoxylin-eosin staining and immunohistochemistry for histopathological changes. Exosomal miRNAs were subjected to second-generation sequencing to identify their differential expression. The results were analyzed using bioinformatics methods and validated using real-time quantitative polymerase chain reaction (RT-qPCR). Results: HIRI rats showed higher levels of ALT, AST, oxidative stress, and inflammatory markers; ED attenuated these effects. The sequencing results showed 6 upregulated and 13 downregulated miRNAs in the IR vs. sham groups, 10 upregulated and 10 downregulated miRNAs in the ED vs. IR groups. PC-3p-190-42101 was screened as an overlapping differentially expressed miRNA, and RT-qPCR validation showed that its expression in HIRI rats was significantly decreased; ED prevented this downregulation. Moreover, the expression of PC-3P-190-42101 was significantly correlated with the level of inflammatory factors. Conclusion: These findings indicate that ED can regulate the level of inflammatory factors by affecting the expression of miRNA PC-3p-190-42101 in plasma exosomes to protect the liver from IRI.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11909
Author(s):  
Yitong Pan ◽  
Shuna Yu ◽  
Jianxin Wang ◽  
Wanzhen Li ◽  
Huiting Li ◽  
...  

The aim of this study was to investigate the changes of TLR4/NLRP3 signal during hepatic ischemia-reperfusion injury (HIRI) and to verify whether N-acetyl-L-tryptophan (L-NAT) protected hepatocytes by regulating the activation of TLR4/NLRP3 signal. We have established the rat HIRI model and H2O2-induced cell damage model to simulate ischemia-reperfusion injury and detect the corresponding indicators. Compared with the sham group, Suzuki score and the level of serum ALT increased after HIRI, accompanied by an increased expression of NLRP3, ASC, Caspase-1, IL-1β, TLR4, and NF-κB. While L-NAT pretreatment reversed the above-mentioned changes. Compared with the control group, cells in the H2O2 treated group became smaller in cell volume and round in shape with unclear boundaries. Similar to the phenotypes in vivo, H2O2 treatment also induced significant increase in expression of pyroptosis-related proteins (NLRP3, ASC, Caspase-1 and IL-1β) and inflammatory factors (TLR4 and NF-κB). While L-NAT pretreatment attenuated injuries caused by H2O2. In conclusion, the present findings demonstrate that L-NAT alleviates HIRI by regulating activation of NLRP3 inflammasome, which may be related to the TLR4/NF-κB signaling pathway.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ying Dong Du ◽  
Wen Yuan Guo ◽  
Cong Hui Han ◽  
Ying Wang ◽  
Xiao Song Chen ◽  
...  

AbstractDespite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during hepatic ischemia–reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased during HIRI. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation. Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during HIRI and provided valuable insights into the therapeutic mechanisms of FTO.


Sign in / Sign up

Export Citation Format

Share Document