Abstract 11809: Trans-Endothelial Electrical Resistance to Assess Cell Layer Integrity in Coronary Artery Endothelial Cells After Hypoxia/Reoxygenation Injury

Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
Matthew J Hampton ◽  
Insha H Maknojia ◽  
zhu li ◽  
Matthew B Barajas ◽  
Matthias L Riess

Introduction: Cardiovascular disease remains one of the leading causes of complications and death worldwide. Therefore, accurate and reliable methods of mimicking ischemia/reperfusion (IR) injury in cardiac cells in vivo are crucial when testing drugs/substances for prevention and treatment. Coronary artery endothelial cells play a critical role in not only supplying blood to myocardial cells but protecting them from insult as well. However, the endothelial layer can be compromised by ischemic injury, heightening damage to the heart during reperfusion. Hypothesis: Varied ischemic insult of mouse coronary artery endothelial cells (MCAECs) affects cell layer integrity as measured by Trans-Endothelial Electrical Resistance (TEER). Methods: MCAECs were cultured on Grenier Bio-One ThinCert™-cell culture inserts for 72 hrs to allow for adequate confluency. Cells were then subjected to either continued normoxic conditions or hypoxia for 3, 6, 12, or 24 hrs, with a 2-hr reperfusion period immediately following. TEER was used to measure the integrity of the endothelial cell layer on the insert. Results: Our data showed a significant decrease in TEER between control and hypoxic groups after 6 hrs (p = 0.0400), 12 hrs (p = 0.0179) and 24 hrs (p = 0.0103), but not after 3 hrs (p = 0.4453) of hypoxia. Conclusion: This indicates that titrating the hypoxia time to a sufficient duration is necessary to achieve an adequate H/R injury which can then be used for potential cardioprotective agents and/or strategies to be tested. Furthermore, TEER is a reliable and reproducible method to assess the role of endothelial cell membrane integrity in cardioprotection.

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 992-992
Author(s):  
Chanchal Sur Chowdhury ◽  
Elizabeth Wareham ◽  
Juying Xu ◽  
Sachin Kumar ◽  
Ashwini S. Hinge ◽  
...  

Abstract Neutrophils traffic in and out of underlying vascular bed during hematopoiesis and immunosurveillance. However, during inflammatory conditions such as ischemia reperfusion injury or atherosclerosis, excessive neutrophil infiltration into tissue drives disease pathogenesis. Yet, the relationship between neutrophil transmigration and inflammation is ill-defined. Neutrophil extravasation can occur either between two endothelial cells (paracellular) or directly through an endothelial cell body (transcellular). During transcellular migration, neutrophils interact with underlying endothelial cells (EC) via invadosomal structures, which forms a 'pore' into endothelial cell membrane, thus facilitating neutrophil migration through EC body. We have recently reported that deficiency in Rap1b, a member of Ras superfamily of GTPase, enhanced neutrophil transcellular migration, invadosomal structures and metalloproteinase (MMP) release (Kumar et al, JEM, 2014), in a manner dependent on high Akt activity. Further, Rap1-deficiency increased neutrophil recruitment to inflamed lungs and enhanced susceptibility to endotoxin shock, suggesting mode of neutrophil migration may influence inflammatory outcome. Here, to further understand which factors drive neutrophil transcellular migration, we analyzed protein content of Rap1b-/- invadosomal structures during transcellular diapedesis. For this, neutrophils were stimulated in transwell filters of 1µM pore size, with FMLP placed in the lower chamber, allowing only invadosomal protrusions into the pores. After removing the cell body from top of the filter, mass spectrometric analysis was performed on the invadosomal fraction. About 680 proteins were identified in protrusions isolated from WT or Rap1b-/- neutrophils. As expected, majority of them were cytoskeleton and adhesion proteins. Interestingly, Rap1b-/- invadosomal structures contained more enzymes of glycolytic pathways, including HK1, Lactate dehydrogenase A (LDHA) and phosphoglycerate kinase1 (PGK1). Immunofluorescent staining and western blotting confirmed this observation. Importantly, glycolytic enzymes were present at the tip of the protrusions in colocalization with F-actin suggesting site specific glycolytic activity, raising the hypothesis that metabolic remodeling may influence the route of neutrophil migration. LDHA converts pyruvate to lactate and subsequent milieu acidification, which can then cause MMP activation. Consistently, Rap1b-/- neutrophils exhibited increased uptake of glucose analogue (2-NBDG) and concurrent intracellular acidification, as detected by pH sensitive dye. To investigate the importance of LDHA activity during transcellular migration, Rap1b-/- neutrophils were treated with a specific pharmacological inhibitor of LDHA, namely FX11. In vitro, FX11 treatment significantly decreased transcellular migration of Rap1b-/- neutrophils. It also reduced invadosome formation of Rap1b-/- neutrophils within transwell pores, as well as neutrophil acidity and MMP activity. Furthermore, during neutrophil-endothelial cell interactions in vitro, Rap1b-/- neutrophils caused F-actin depolymerization in EC, likely facilitating transcellular passage; this was inhibited by FX11. To examine its effect in vivo, under same inflammatory microenvironment, Rap1b-/- and WT neutrophils were tagged with cell tracker dyes and transferred to recipient mice, treated with FX11 or DMSO control. Ear microvasculature was stimulated with FMLP and labeled with PECAM antibody to visualize EC junctions. Rap1b-/- neutrophils migrated out of vessels at higher frequency than WT cells, which was abrogated by FX11 treatment. Moreover, treatment with FX11 reduced the number of Rap1b-/- neutrophils located away from EC junction (transcellular route), in vivo. These results suggest enhanced local glycolytic metabolism and LDHA activity could act as critical regulators of transcellular migration. Increase in extracellular acidification mediated by LDHA activity, could affect endothelial permeability and alter neutrophil migratory behavior affecting outcome of inflammation. Since milieu acidification plays a major role in ischemic damage to the heart, these findings may be clinically important for our understanding of hyperinflammatory disorders. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 507-515 ◽  
Author(s):  
Steffen Massberg ◽  
Georg Enders ◽  
Rosmarie Leiderer ◽  
Simone Eisenmenger ◽  
Dietmar Vestweber ◽  
...  

Abstract Growing evidence supports a pathophysiological role for platelets during the manifestation of postischemic reperfusion injury; in the current study, we investigated the nature and the molecular determinants of platelet-endothelial cell interactions induced by ischemia/reperfusion (I/R). Platelet-endothelium and leukocyte-endothelium interactions after 1 hour of ischemia were monitored in vivo within mouse small intestine. By intravital fluorescence microscopy, we observed that platelets, like leukocytes, roll along or firmly adhere to postischemic microvascular endothelial cells. In contrast, few leukocyte-endothelial cell interactions were detected in sham-operated controls. Monoclonal antibodies against P-selectin significantly attenuated platelet rolling and adherence in response to I/R. To identify whether platelet or endothelial P-selectin plays the major role in mediating postischemic platelet-endothelial cell interactions, P-selectin-deficient or wild-type platelets were transfused into wild-type or P-selectin-deficient mice, respectively. Whereas platelets lacking P-selectin rolled along or adhered to postischemic wild-type endothelium, interactions between wild-type platelets with mutant endothelium were nearly absent, indicating that I/R-induced platelet-endothelium interactions are dependent on the expression of P-selectin by endothelial cells. Concomitantly, P-selectin expression in the intestinal microvasculature was enhanced in response to I/R, whereas no upregulation of P-selectin was observed on circulating platelets. In summary, we provide first in vivo evidence that platelets accumulate in the postischemic microvasculature early after reperfusion via P-selectin-ligand interactions. Platelet recruitment and subsequent activation might play an important role in the pathogenesis of I/R injury.


Blood ◽  
2001 ◽  
Vol 98 (9) ◽  
pp. 2869-2871 ◽  
Author(s):  
Shigeru Yanagi ◽  
Ryoko Inatome ◽  
Junyi Ding ◽  
Hironori Kitaguchi ◽  
Victor L. J. Tybulewicz ◽  
...  

Abstract Mice deficient in the Syk tyrosine kinase showed severe petechiae in utero and died shortly after birth. The mechanism of this bleeding, however, remains unknown. Here it is shown that this bleeding is caused by morphologic defects of Syk-deficient endothelial cells during embryogenesis. Immunoblot and reverse transcriptase–polymerase chain reaction Northern blot analysis indicated that Syk is expressed in several endothelial cell lines. Immunocytochemical analysis also confirmed that Syk is expressed in the normal embryonic endothelial cells and is absent in Syk-deficient mice. Furthermore, electron microscopic analysis of Syk-deficient mice revealed an abnormal morphogenesis and a decreased number of endothelial cells. The results indicate a critical role for Syk in endothelial cell function and in maintaining vascular integrity in vivo.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2703-2711 ◽  
Author(s):  
Ombretta Salvucci ◽  
Lei Yao ◽  
Sabrina Villalba ◽  
Agatha Sajewicz ◽  
Stefania Pittaluga ◽  
...  

Abstract The chemokine stromal-derived factor-1 (SDF-1) and its unique receptor, CXCR4, are required for normal cardiovascular development, but a critical role for SDF-1 in postnatal vascular remodeling and the mechanisms underlying SDF-1/CXCR-4 vasculogenesis are unclear. Here we show that SDF-1 is expressed by the vascular endothelium from selected healthy and tumor tissues. In vitro, primary endothelial cells constitutively express SDF-1 that is detected in the cytoplasm, on the cell surface, and in the culture supernatant. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) increase SDF-1 expression in endothelial cells. In functional studies, pertussis toxin and antibodies to SDF-1 or CXCR-4 disrupt extracellular matrix-dependent endothelial cell tube formation in vitro. This morphogenic process is associated with time-dependent modulation of surface CXCR-4 expression that changes from being diffuse to being polarized and subsequently lost. In vivo, pertussis toxin and neutralizing antibodies directed at SDF-1 inhibit growth factor–dependent neovascularization. These results indicate that SDF-1/CXCR-4 identifies VEGF- and bFGF-regulated autocrine signaling systems that are essential regulators of endothelial cell morphogenesis and angiogenesis.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 507-515 ◽  
Author(s):  
Steffen Massberg ◽  
Georg Enders ◽  
Rosmarie Leiderer ◽  
Simone Eisenmenger ◽  
Dietmar Vestweber ◽  
...  

Growing evidence supports a pathophysiological role for platelets during the manifestation of postischemic reperfusion injury; in the current study, we investigated the nature and the molecular determinants of platelet-endothelial cell interactions induced by ischemia/reperfusion (I/R). Platelet-endothelium and leukocyte-endothelium interactions after 1 hour of ischemia were monitored in vivo within mouse small intestine. By intravital fluorescence microscopy, we observed that platelets, like leukocytes, roll along or firmly adhere to postischemic microvascular endothelial cells. In contrast, few leukocyte-endothelial cell interactions were detected in sham-operated controls. Monoclonal antibodies against P-selectin significantly attenuated platelet rolling and adherence in response to I/R. To identify whether platelet or endothelial P-selectin plays the major role in mediating postischemic platelet-endothelial cell interactions, P-selectin-deficient or wild-type platelets were transfused into wild-type or P-selectin-deficient mice, respectively. Whereas platelets lacking P-selectin rolled along or adhered to postischemic wild-type endothelium, interactions between wild-type platelets with mutant endothelium were nearly absent, indicating that I/R-induced platelet-endothelium interactions are dependent on the expression of P-selectin by endothelial cells. Concomitantly, P-selectin expression in the intestinal microvasculature was enhanced in response to I/R, whereas no upregulation of P-selectin was observed on circulating platelets. In summary, we provide first in vivo evidence that platelets accumulate in the postischemic microvasculature early after reperfusion via P-selectin-ligand interactions. Platelet recruitment and subsequent activation might play an important role in the pathogenesis of I/R injury.


Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Noureddine Idris-Khodja ◽  
Marouene Kheloufi ◽  
Valérie B Schini-Kerth

Endothelial cell senescence promotes endothelial dysfunction, which has been suggested to have a critical role in the initiation and/or progression of atherosclerosis, and also to contribute to the pathogenesis of age-associated vascular disorders. Endothelial senescence is characterized by an irreversible cell cycle arrest, which involves an increased activity of p53 and its downstream effector p21. Endothelial senescence is also associated with a decreased expression of endothelial nitric oxide synthase (eNOS). The present study has evaluated whether the Crataegus special extract WS ® 1442, a rich source of polyphenols and a potent inducer of eNOS activation, prevents replicative senescence of porcine coronary artery endothelial cells, and, if so, to elucidate the underlying mechanism. Replicative senescence was induced by sequential passaging of primary cultures of endothelial cells up to the fourth passage (P4). Changes of endothelial senescence were determined by measuring senescence-associated β-galactosidase (SA-β-gal) activity. Western blot was used to analyze the protein expression of p53, p21 and eNOS. Compared to P1, the SA-β-gal activity was 240% increased in cells at P4 ( P <0.001), and this effect was associated with 93% ( P <0.001) and 56% ( P <0.001) increased expression of p53, p21 and a 87% decreased expression of eNOS ( P <0.001). Treatment of P3 cells with the p53 inhibitor (pifithrin) reduced 43% SA-β-gal activity indicating a role of p53 activity in replicative senescence ( P <0.001). Treatment of endothelial cells with the Crataegus extract reduced by 56% the SA-β-gal activity ( P <0.01), improved by 131 % eNOS expression ( P <0.01) and reduced by 39% the up-regulation of p21 in cells at P4 without affecting the expression level of p53. The inhibitor of eNOS, L-NAME promoted the induction of endothelial senescence at P1 and reduced the inhibitory effect of the Crataegus extract on SA-β-gal activity at P3. In conclusion, the present findings indicate that the Crataegus extract delays endothelial cell replicative senescence most likely by preventing the downregulation of eNOS expression and activity and the upregulation of the p53/p21 pathway.


Blood ◽  
2011 ◽  
Vol 118 (11) ◽  
pp. 3172-3181 ◽  
Author(s):  
Alexi P. Surette ◽  
Patricia A. Madureira ◽  
Kyle D. Phipps ◽  
Victoria A. Miller ◽  
Per Svenningsson ◽  
...  

AbstractEndothelial cells form the inner lining of vascular networks and maintain blood fluidity by inhibiting blood coagulation and promoting blood clot dissolution (fibrinolysis). Plasmin, the primary fibrinolytic enzyme, is generated by the cleavage of the plasma protein, plasminogen, by its activator, tissue plasminogen activator. This reaction is regulated by plasminogen receptors at the surface of the vascular endothelial cells. Previous studies have identified the plasminogen receptor protein S100A10 as a key regulator of plasmin generation by cancer cells and macrophages. Here we examine the role of S100A10 and its annexin A2 binding partner in endothelial cell function using a homozygous S100A10-null mouse. Compared with wild-type mice, S100A10-null mice displayed increased deposition of fibrin in the vasculature and reduced clearance of batroxobin-induced vascular thrombi, suggesting a role for S100A10 in fibrinolysis in vivo. Compared with wild-type cells, endothelial cells from S100A10-null mice demonstrated a 40% reduction in plasminogen binding and plasmin generation in vitro. Furthermore, S100A10-deficient endothelial cells demonstrated impaired neovascularization of Matrigel plugs in vivo, suggesting a role for S100A10 in angiogenesis. These results establish an important role for S100A10 in the regulation of fibrinolysis and angiogenesis in vivo, suggesting S100A10 plays a critical role in endothelial cell function.


2012 ◽  
Vol 82 (4) ◽  
pp. 267-274 ◽  
Author(s):  
Zahide Cavdar ◽  
Mehtap Y. Egrilmez ◽  
Zekiye S. Altun ◽  
Nur Arslan ◽  
Nilgun Yener ◽  
...  

The main pathophysiology in cerebral ischemia is the structural alteration in the neurovascular unit, coinciding with neurovascular matrix degradation. Among the human matrix metalloproteinases (MMPs), MMP-2 and -9, known as gelatinases, are the key enzymes for degrading type IV collagen, which is the major component of the basal membrane that surrounds the cerebral blood vessel. In the present study, we investigated the effects of resveratrol on cytotoxicity, reactive oxygen species (ROS), and gelatinases (MMP-2 and -9) in human cerebral microvascular endothelial cells exposed to 6 hours of oxygen-glucose deprivation and a subsequent 24 hours of reoxygenation with glucose (OGD/R), to mimic ischemia/reperfusion in vivo. Lactate dehydrogenase increased significantly, in comparison to that in the normoxia group. ROS was markedly increased in the OGD/R group, compared to normoxia. Correspondingly, ROS was significantly reduced with 50 μM of resveratrol. The proMMP-2 activity in the OGD/R group showed a statistically significant increase from the control cells. Resveratrol preconditioning decreased significantly the proMMP-2 in the cells exposed to OGD/R in comparison to that in the OGD/R group. Our results indicate that resveratrol regulates MMP-2 activity induced by OGD/R via its antioxidant effect, implying a possible mechanism related to the neuroprotective effect of resveratrol.


1967 ◽  
Vol 18 (03/04) ◽  
pp. 592-604 ◽  
Author(s):  
H. R Baumgartner ◽  
J. P Tranzer ◽  
A Studer

SummaryElectron microscopic and histologic examination of rabbit ear vein segments 4 and 30 min after slight endothelial damage have yielded the following findings :1. Platelets do not adhere to damaged endothelial cells.2. If the vessel wall is denuded of the whole endothelial cell, platelets adhere to the intimai basement lamina as do endothelial cells.3. The distance between adherent platelets as well as endothelial cells and intimai basement lamina measures 10 to 20 mµ, whereas the distance between aggregated platelets is 30 to 60 mµ.4. 5-hydroxytryptamine (5-HT) is released from platelets during viscous metamorphosis at least in part as 5-HT organelles.It should be noted that the presence of collagen fibers is not necessary for platelet thrombus formation in vivo.


2021 ◽  
Vol 22 (8) ◽  
pp. 3955
Author(s):  
László Bálint ◽  
Zoltán Jakus

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


Sign in / Sign up

Export Citation Format

Share Document