Abstract 327: Apelin-13 Increases Myocardial Progenitor Cells and Improves Myocardial Remodeling of Post-myocardial Infarction.

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
lanfang Li ◽  
Heng Zeng ◽  
Jian-Xiong Chen

ABSTRACT: Apelin is an endogenous ligand for the angiotensin-like 1 receptor (APJ) and has beneficial effects against hypertension and myocardial ischemia/reperfusion injury. Little is known about the role of apelin in the homing of vascular progenitor cells (PCs) and cardiac remodeling post-myocardial infarction (MI). The present study investigates whether apelin affects PCs homing to the infarcted myocardium thereby mediating cardiac remodeling post-MI. Mice were infarcted by coronary artery ligation and apelin-13 (1 mg/kg.d) was injected for three days prior to MI and for either 24 hours or 14 days post MI. Homing of vascular progenitor cell (CD133 + /c-kit + /Sca1 + , CD133 + /SDF-1α + and CD133 + /CXCR4 + ) into the ischemic area were examined at 24 hours and 14 days post-MI. Myocardial Akt, eNOS, VEGF, Jagged1, Notch3, SDF-1α and CXCR4 expression were assessed. Functional analyses were performed at day 14 after MI. Mice receiving apelin-13 treatment demonstrated upregulation of SDF-1α/CXCR4 expression and dramatically increased the number of CD133 + /c-kit + /Sca1 + , CD133 + /SDF-1α + and c-kit + /CXCR4 + cells in the infarcted hearts. Apelin-13 also significantly increased Akt and eNOS phosphorylation and upregulated VEGF, Jagged1, Notch3 expression in the ischemic hearts. This was accompanied by a significant reduction of myocardial apoptosis. Further, treatment with apelin-13 promoted myocardial angiogenesis, attenuated cardiac fibrosis and hypertrophy together with a significant improvement of cardiac function at 14 days post-MI mice. Apelin-13 increases angiogenesis and improves cardiac remodeling by a mechanism involving upregulation of SDF-1α/CXCR4 and homing of vascular progenitor cells.

2012 ◽  
Vol 303 (5) ◽  
pp. H605-H618 ◽  
Author(s):  
Lanfang Li ◽  
Heng Zeng ◽  
Jian-Xiong Chen

Apelin is an endogenous ligand for the angiotensin-like 1 receptor (APJ) and has beneficial effects against myocardial ischemia-reperfusion injury. Little is known about the role of apelin in the homing of vascular progenitor cells (PCs) and cardiac functional recovery postmyocardial infarction (post-MI). The present study investigated whether apelin affects PC homing to the infarcted myocardium, thereby mediating repair and functional recovery post-MI. Mice were infarcted by coronary artery ligation, and apelin-13 (1 mg·kg−1·day−1) was injected for 3 days before MI and for 14 days post-MI. Homing of vascular PCs [CD133+/c-Kit+/Sca1+, CD133+/stromal cell-derived factor (SDF)-1α+, and CD133+/CXC chemokine receptor (CXCR)-4+] into the ischemic area was examined. Myocardial Akt, endothelial nitric oxide synthase (eNOS), VEGF, jagged1, notch3, SDF-1α, and CXCR-4 expression were assessed at 24 h and 14 days post-MI. Functional analyses were performed on day 14 post-MI. Mice that received apelin-13 treatment demonstrated upregulation of SDF-1α/CXCR-4 expression and dramatically increased the number of CD133+/c-Kit+/Sca1+, CD133+/SDF-1α+, and c-Kit+/CXCR-4+ cells in infarcted hearts. Apelin-13 also significantly increased Akt and eNOS phosphorylation and upregulated VEGF, jagged1, and notch3 expression in ischemic hearts. This was accompanied by a significant reduction of myocardial apoptosis. Furthermore, treatment with apelin-13 promoted myocardial angiogenesis and attenuated cardiac fibrosis and hypertrophy together with a significant improvement of cardiac function at 14 days post-MI. Apelin-13 increases angiogenesis and improves cardiac repair post-MI by a mechanism involving the upregulation of SDF-1α/CXCR-4 and homing of vascular PCs.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0173657 ◽  
Author(s):  
Janine C. Deddens ◽  
Dries A. Feyen ◽  
Peter-Paul Zwetsloot ◽  
Maike A. Brans ◽  
Sailay Siddiqi ◽  
...  

2018 ◽  
Vol 132 (1) ◽  
pp. 93-110 ◽  
Author(s):  
Lei-Lei Ma ◽  
Yang Li ◽  
Pei-Pei Yin ◽  
Fei-Juan Kong ◽  
Jun-Jie Guo ◽  
...  

Left ventricular hypertrophy (LVH) is causally related to increased morbidity and mortality following acute myocardial infarction (AMI) via still unknown mechanisms. Although rapamycin exerts cardioprotective effects against myocardial ischemia/reperfusion (MI/R) injury in normal animals, whether rapamycin-elicited cardioprotection is altered in the presence of LVH has yet to be determined. Pressure overload induced cardiac hypertrophied mice and sham-operated controls were exposed to AMI by coronary artery ligation, and treated with vehicle or rapamycin 10 min before reperfusion. Rapamycin produced marked cardioprotection in normal control mice, whereas pressure overload induced cardiac hypertrophied mice manifested enhanced myocardial injury, and was refractory to rapamycin-elicited cardioprotection evidenced by augmented infarct size, aggravated cardiomyocyte apoptosis, and worsening cardiac function. Rapamycin alleviated MI/R injury via ERK-dependent antioxidative pathways in normal mice, whereas cardiac hypertrophied mice manifested markedly exacerbated oxidative/nitrative stress after MI/R evidenced by the increased iNOS/gp91phox expression, superoxide production, total NO metabolites, and nitrotyrosine content. Moreover, scavenging superoxide or peroxynitrite by selective gp91phox assembly inhibitor gp91ds-tat or ONOO− scavenger EUK134 markedly ameliorated MI/R injury, as shown by reduced myocardial oxidative/nitrative stress, alleviated myocardial infarction, hindered cardiomyocyte apoptosis, and improved cardiac function in aortic-banded mice. However, no additional cardioprotective effects were achieved when we combined rapamycin and gp91ds-tat or EUK134 in ischemic/reperfused hearts with or without LVH. These results suggest that cardiac hypertrophy attenuated rapamycin-induced cardioprotection by increasing oxidative/nitrative stress and scavenging superoxide/peroxynitrite protects the hypertrophied heart from MI/R.


RSC Advances ◽  
2016 ◽  
Vol 6 (60) ◽  
pp. 54938-54948 ◽  
Author(s):  
Amit Manhas ◽  
Dipti Tripathi ◽  
Bharti Biswas ◽  
Hafsa Ahmad ◽  
Dipika Goyal ◽  
...  

Endothelial cell mediated inflammation flags and mediates the progression of pre and post myocardial infarction.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Samuel F Slone ◽  
Salma Fleifil ◽  
Perwez Alam ◽  
Sarah Anthony ◽  
Michelle L Nieman ◽  
...  

Myocardial infarction (MI), resulting from ischemia/reperfusion (I/R) injury due to the obstruction of coronary blood flow, affects an estimated 800,000 Americans annually resulting in a cost of nearly 12 billion dollars to the health care system. Recent medical advances have led to improved survival following acute MI, but unfortunately, the post-MI inflammatory and fibrotic remodeling of the heart is driving an increase in the prevalence of heart failure. Preliminary data from our lab shows that the RNA binding protein Human antigen R (HuR) undergoes nuclear-to-cytoplasmic translocation within 30 minutes and is increased in expression at both 2 hours and 7 days post-I/R. The objective of this work is to determine the mechanistic role of HuR on the regulation of cardiac cytokine/chemokine expression and the functional effect of HuR on macrophage infiltration and polarization post-I/R. Wild-type mice were subjected to 30 minutes of LAD (left anterior descending) coronary artery ligation (ischemia) followed by reperfusion with HuR inhibitor or vehicle control administered at the start of reperfusion. Our results show that inhibition of HuR reduces cardiac mRNA expression of IL-6, TNF-alpha, and ICAM-1 at 2 hours post-reperfusion, but does not affect initial (24 hour) infarct size. In addition, HuR inhibition reduces macrophage infiltration at 7 days post-I/R, as well as cardiac fibrosis and ventricular dilation while preserving cardiac function at 14 days post-I/R. Furthermore, H9c2s treated with HuR inhibitor blunts the mRNA expression of CCL2 after acute stimulation of lipopolysaccharide. In conclusion, we show that HuR inhibition at the time of reperfusion is protective against post-MI inflammatory and fibrotic remodeling through a reduction in inflammatory gene expression and macrophage infiltration. Previous work by the lab has demonstrated a direct role for HuR in cardiac myocytes, but these results also suggest that HuR-mediated gene expression in macrophages may play a role in post-MI inflammatory and fibrotic remodeling.


2021 ◽  
Vol 10 (13) ◽  
pp. 2968
Author(s):  
Alessandro Bellis ◽  
Giuseppe Di Gioia ◽  
Ciro Mauro ◽  
Costantino Mancusi ◽  
Emanuele Barbato ◽  
...  

The significant reduction in ‘ischemic time’ through capillary diffusion of primary percutaneous intervention (pPCI) has rendered myocardial-ischemia reperfusion injury (MIRI) prevention a major issue in order to improve the prognosis of ST elevation myocardial infarction (STEMI) patients. In fact, while the ischemic damage increases with the severity and the duration of blood flow reduction, reperfusion injury reaches its maximum with a moderate amount of ischemic injury. MIRI leads to the development of post-STEMI left ventricular remodeling (post-STEMI LVR), thereby increasing the risk of arrhythmias and heart failure. Single pharmacological and mechanical interventions have shown some benefits, but have not satisfactorily reduced mortality. Therefore, a multitarget therapeutic strategy is needed, but no univocal indications have come from the clinical trials performed so far. On the basis of the results of the consistent clinical studies analyzed in this review, we try to design a randomized clinical trial aimed at evaluating the effects of a reasoned multitarget therapeutic strategy on the prevention of post-STEMI LVR. In fact, we believe that the correct timing of pharmacological and mechanical intervention application, according to their specific ability to interfere with survival pathways, may significantly reduce the incidence of post-STEMI LVR and thus improve patient prognosis.


Sign in / Sign up

Export Citation Format

Share Document