scholarly journals AMP Activated Protein Kinase-α2 Regulates Expression of Estrogen-Related Receptor-α, a Metabolic Transcription Factor Related to Heart Failure Development

Hypertension ◽  
2011 ◽  
Vol 58 (4) ◽  
pp. 696-703 ◽  
Author(s):  
Xinli Hu ◽  
Xin Xu ◽  
Zhongbing Lu ◽  
Ping Zhang ◽  
John Fassett ◽  
...  
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Hideyuki Sasaki ◽  
Hiroshi Asanuma ◽  
Masashi Fujita ◽  
Hiroyuki Takahama ◽  
Masanori Asakura ◽  
...  

Background; Several studies have shown that metformin activates AMP-activated protein kinase (AMPK), which mediates potent cardioprotection against ischemia-reperfusion injury. AMPK is also activated in experimental failing myocardium, suggesting that activation of AMPK is beneficial for the pathophysiology of heart failure. We investigated whether metformin prevents oxidative stress-induced cell death in rat cardiomyocytes and attenuates the progression of heart failure in dogs. Methods and Results; The treatment with metformin (10 μmol/L) protected the rat cultured cardiomyocytes against cell death due to H 2 O 2 exposure (50 μmol/L) as indicated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), TUNEL staining, and flow cytometry. These effects were blunted by an AMPK inhibitor, compound-C (20 μmol/L), suggesting that the activation of AMPK decreased the extent of apoptosis-induced cell death due to H 2 O 2 exposure. Continuous rapid ventricular pacing (230/min for 4 weeks) in dogs caused heart failure and the treatment with metformin (100 mg/kg/day PO, n=8) decreased left ventricular (LV) end-diastolic dimension (32.8±0.4 vs. 36.5±1.0 mm, p< 0.01) and pressure (11.8±1.1 vs. 22±0.9 mmHg, p< 0.01), and increased LV fractional shortening (18.6±1.8 vs. 9.6±0.7 %, p< 0.01) along with enhanced phosphorylation of AMPK and the decreased the number of TUNEL-positive cells of the LV myocardium compared with the vehicle group (n=8). Interestingly, metformin increased the protein and mRNA levels of endothelial nitric oxide synthase of the LV myocardium and plasma nitric oxide levels. Metformin improved the plasma insulin resistance without increased myocardial GLUT-4 translocation. Furthermore, the subcutaneous administration of AICAR (50 mg/kg/every other day), another AMPK activator mediated the equivalent effects to metformin, strengthening the pivotal role of AMPK in reduction of apoptosis and prevention of heart failure. Conclusions; Activation of myocardial AMPK attenuated the oxidative stress-induced cardiomyocyte apoptosis and prevented the progression of heart failure in dogs, along with eNOS activation. Thus, metformin or AICAR may be applicable as a novel therapy for heart failure.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hideyuki Sasaki ◽  
Hiroshi Asanuma ◽  
Masashi Fujita ◽  
Hiroyuki Takahama ◽  
Masakatsu Wakeno ◽  
...  

Backgrounds; Since AMP-activated protein kinase (AMPK) is activated in the pressure-overloaded hypertrophic hearts, we investigated whether the activation of AMPK caused by metformin attenuates the progression of heart failure induced by rapid pacing in dogs and decreases cellular damage caused by oxidative stress in neonatal rat cardiac myocytes. Methods and Results; Heart failure was induced by right ventricular (RV) pacing at 230 bpm for 4 weeks in dogs. Treatment of dogs with metformin (100mg/kg/day, orally, n=8, Met group) for 4 weeks prevented significantly the progression of pacing-induced heart failure evaluated by echocardiographical and hemodynamic measurement compared with the control group (n=8). Left ventricular (LV) diastolic and systolic dimension (LVDd and LVDs) were smaller (32.8±0.4 and 26.7±0.9 mm, respectively) and fractional shortening (FS) and ejection fraction (EF) were preserved in Met group (18.6±1.8 and 45.5±3.5 %, respectively) compared with the control group (LVDd and LVDs; 36.5±1.0 and 33.0±1.0 mm, FS and EF; 9.6±0.7 and 27.0±1.9 %, p<0.05 vs. Met group each). Furthermore, both pulmonary capillary wedge pressure (PCWP) and mean pulmonary arterial pressure (mPA) were significantly lower in Met group (11.1±0.9 and 18.1±1.4 mmHg, respectively) compared with the control group (21.0±2.2 and 26.8±2.8 mmHg, respectively). Treatment of cultured cardiac myocytes with a maximal physiological concentration of metformin (10μmol/L) attenuated the cellular damage against H 2 O 2 exposure (50μmol/L). These effects were blunted by an AMPK inhibitor, compound-C (20μmol/L), suggesting that the activation of AMPK increased the cellular viability during H 2 O 2 exposure. Conclusions; Metformin that activates AMPK prevented the progression of heart failure induced by rapid pacing in dogs and attenuated the cellular damage against H 2 O 2 exposure in cardiac myocytes. AMPK may be one of new targets for preventing heart failure in clinical settings.


2015 ◽  
Vol 36 (4) ◽  
pp. 628-644 ◽  
Author(s):  
Katherine A. Braun ◽  
Kenneth M. Dombek ◽  
Elton T. Young

In the yeastSaccharomyces cerevisiae, the switch from respiratory metabolism to fermentation causes rapid decay of transcripts encoding proteins uniquely required for aerobic metabolism. Snf1, the yeast ortholog of AMP-activated protein kinase, has been implicated in this process because inhibiting Snf1 mimics the addition of glucose. In this study, we show that theSNF1-dependentADH2promoter, or just the major transcription factor binding site, is sufficient to confer glucose-induced mRNA decay upon heterologous transcripts.SNF1-independent expression from theADH2promoter prevented glucose-induced mRNA decay without altering the start site of transcription.SNF1-dependent transcripts are enriched for the binding motif of the RNA binding protein Vts1, an important mediator of mRNA decay and mRNA repression whose expression is correlated with decreased abundance ofSNF1-dependent transcripts during the yeast metabolic cycle. However, deletion ofVTS1did not slow the rate of glucose-induced mRNA decay.ADH2mRNA rapidly dissociated from polysomes after glucose repletion, and sequences bound by RNA binding proteins were enriched in the transcripts from repressed cells. Inhibiting the protein kinase A pathway did not affect glucose-induced decay ofADH2mRNA. Our results suggest that Snf1 may influence mRNA stability by altering the recruitment activity of the transcription factor Adr1.


Cell Reports ◽  
2015 ◽  
Vol 12 (4) ◽  
pp. 599-609 ◽  
Author(s):  
Yen-Hsing Li ◽  
Jia Luo ◽  
Yung-Yi C. Mosley ◽  
Victoria E. Hedrick ◽  
Lake N. Paul ◽  
...  

2009 ◽  
Vol 104 (3) ◽  
pp. 403-411 ◽  
Author(s):  
Susheel Gundewar ◽  
John W. Calvert ◽  
Saurabh Jha ◽  
Iris Toedt-Pingel ◽  
Sang Yong Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document