scholarly journals Serine 26 in Early Growth Response‐1 Is Critical for Endothelial Proliferation, Migration, and Network Formation

Author(s):  
Fernando S. Santiago ◽  
Yue Li ◽  
Levon M. Khachigian

Background Vascular endothelial cell proliferation, migration, and network formation are key proangiogenic processes involving the prototypic immediate early gene product, Egr‐1 (early growth response‐1). Egr‐1 undergoes phosphorylation at a conserved Ser26 but its function is completely unknown in endothelial cells or any other cell type. Methods and Results A CRISPR/Cas9 strategy was used to introduce a homozygous Ser26>Ala mutation into endogenous Egr‐1 in human microvascular endothelial cells. In the course of generating mutant cells, we produced cells with homozygous deletion in Egr ‐1 caused by frameshift and premature termination. We found that Ser26 mutation in Egr‐1, or Egr‐1 deletion, perturbed endothelial cell proliferation in models of cell counting or real‐time growth using the xCELLigence System. We found that Ser26 mutation or Egr‐1 deletion ameliorated endothelial cell migration toward VEGF‐A 165 (vascular endothelial growth factor‐A) in a dual‐chamber model. On solubilized basement membrane preparations, Ser26 mutation or Egr‐1 deletion prevented endothelial network (or tubule) formation, an in vitro model of angiogenesis. Flow cytometry further revealed that Ser26 mutation or Egr‐1 deletion elevated early and late apoptosis. Finally, we demonstrated that Ser26 mutation or Egr‐1 deletion increased VE‐cadherin (vascular endothelial cadherin) expression, a regulator of endothelial adhesion and signaling, permeability, and angiogenesis. Conclusions These findings not only indicate that Egr‐1 is essential for endothelial cell proliferation, migration, and network formation, but also show that point mutation in Ser26 is sufficient to impair each of these processes and trigger apoptosis as effectively as the absence of Egr‐1. This highlights the importance of Ser26 in Egr‐1 for a range of proangiogenic processes.

Blood ◽  
2010 ◽  
Vol 115 (12) ◽  
pp. 2520-2532 ◽  
Author(s):  
Jun-ichi Suehiro ◽  
Takao Hamakubo ◽  
Tatsuhiko Kodama ◽  
William C. Aird ◽  
Takashi Minami

Endothelial cell activation and dysfunction underlie many vascular disorders, including atherosclerosis, tumor growth, and sepsis. Endothelial cell activation, in turn, is mediated primarily at the level of gene transcription. Here, we show that in response to several activation agonists, including vascular endothelial growth factor (VEGF), tumor necrosis factor-α, and thrombin, endothelial cells demonstrate rapid and profound induction of the early growth response (Egr) genes egr-1 and egr-3. In VEGF-treated endothelial cells, induction of Egr-3 was far greater and more prolonged compared with Egr-1. VEGF-mediated stimulation of Egr-3 involved the inducible binding of NFATc, serum response factor, and CREB to their respective consensus motifs in the upstream promoter region of Egr-3. Knockdown of Egr-3 markedly impaired VEGF-mediated proliferation, migration, and tube formation of endothelial cells and blocked VEGF-induced monocyte adhesion. Egr-3 knockdown abrogated VEGF-mediated vascular outgrowth from ex vivo aortic rings and attenuated Matrigel plug vascularization and melanoma tumor growth in vivo. Together, these findings suggest that Egr-3 is a critical determinant of VEGF signaling in activated endothelial cells. Thus, Egr-3 represents a potential therapeutic target in VEGF-mediated vasculopathic diseases.


2001 ◽  
Vol 94 (6) ◽  
pp. 961-971 ◽  
Author(s):  
Roberto Pallini ◽  
Francesco Pierconti ◽  
Maria Laura Falchetti ◽  
Daniela D'Arcangelo ◽  
Eduardo Fernandez ◽  
...  

Object. Evidence from recent in vitro studies indicates that reactivation of telomerase, the enzyme that synthesizes the telomere ends of chromosomes, is a crucial event in the unlimited clonal expansion of endothelial cells that precedes the neoplastic conversion of these cells. It is known that high-grade gliomas express telomerase and that, in these neoplasms, proliferating endothelial cells may undergo transformational changes with development of sarcomatous components within the primitive tumor. To assess whether telomerase is involved in the endothelial cell proliferation that characterizes brain tumor angiogenesis, the authors investigated at the single-cell level the expression of messenger (m)RNA for the human telomerase catalytic subunit human telomerase reverse transcriptase (hTERT) by vascular cells of astrocytic tumors. Methods. The in situ hybridization (ISH) method was performed by processing histological sections with specific riboprobes for hTERT and for c-myc, an oncogene that is known to upregulate hTERT. Results of the ISH studies were compared with proliferative activity, as estimated by Ki-67 immunostaining. The expression of hTERT mRNA by vascular endothelial cells was related to the histological grade of the tumor because it was detected in five (29%) of 17 low-grade astrocytomas, nine (56%) of 16 anaplastic astrocytomas, and 19 (100%) of 19 glioblastomas multiforme (GBMs). Expression of c-myc mRNA was strictly correlated with that of hTERT mRNA. In low-grade astrocytomas and anaplastic astrocytomas, a dissociation was noted between hTERT mRNA expression and the proliferation rate of endothelial cells. Conversely, GBMs displayed a significant correlation between the level of hTERT mRNA expression and endothelial cell proliferation. Data from an in vitro assay in which human umbilical vein endothelial cells were stimulated to proliferate by adding vascular endothelial growth factor and an ISH study of newly formed vessels surrounding brain infarcts confirmed that expression of hTERT mRNA does not merely reflect the proliferative status of endothelial cells but represents a specific feature of brain tumor neovascularization. Conclusions. The results of this study are consistent with a role of telomerase in the angiogenesis of astrocytic tumors. Expression of hTERT mRNA by tumor vascular cells is an early event during the progression of astrocytic tumors, which precedes endothelial cell proliferation and may represent a first sign of dedifferentiation. Other than elucidating the mechanisms of tumor angiogenesis, these results encourage research on antitelomerase drugs for the treatment of malignant gliomas.


Endocrinology ◽  
2008 ◽  
Vol 149 (12) ◽  
pp. 6076-6083 ◽  
Author(s):  
Graham W. Aberdeen ◽  
Stanley J. Wiegand ◽  
Thomas W. Bonagura ◽  
Gerald J. Pepe ◽  
Eugene D. Albrecht

To assess whether there is a link between estrogen, vascular endothelial growth factor (VEGF), and early aspects of uterine angiogenesis, an acute temporal study was conducted in which ovariectomized baboons were pretreated with VEGF Trap, which sequesters endogenous VEGF, and administered estradiol at time 0 h. Serum estradiol levels approximated 500 pg/ml 4–6 h after estradiol administration. VEGF mRNA levels in endometrial glandular epithelial and stromal cells were increased to values 6 h after estradiol that were 3.74 ± 0.99-fold (mean ± se) and 5.70 ± 1.60-fold greater (P < 0.05), respectively, than at 0 h. Microvessel interendothelial cell tight junctions, which control paracellular permeability, were present in the endometrium at time 0 h, but not evident 6 h after estradiol administration. Thus, microvessel paracellular cleft width increased (P < 0.01, ANOVA) from 5.03 ± 0.22 nm at 0 h to 7.27 ± 0.48 nm 6 h after estrogen. In contrast, tight junctions remained intact, and paracellular cleft widths were unaltered in estradiol/VEGF Trap and vehicle-treated animals. Endometrial microvessel endothelial cell mitosis, i.e. percent Ki67+/Ki67− immunolabeled endothelial cells, increased (P < 0.05) from 2.9 ± 0.3% at 0 h to 21.4 ± 7.0% 6 h after estrogen treatment but was unchanged in estradiol/VEGF Trap and vehicle-treated animals. In summary, the estrogen-induced disruption of endometrial microvessel endothelial tight junctions and increase in endothelial cell proliferation were prevented by VEGF Trap. Therefore, we propose that VEGF mediates the estrogen-induced increase in microvessel permeability and endothelial cell proliferation as early steps in angiogenesis in the primate endometrium.


2019 ◽  
Vol 317 (4) ◽  
pp. F1022-F1033 ◽  
Author(s):  
Hui Zhuo ◽  
Dong Zhou ◽  
Yuanyuan Wang ◽  
Hongyan Mo ◽  
Ying Yu ◽  
...  

Kidney fibrosis is associated with an increased lymphangiogenesis, characterized by the formation and expansion of new lymphatic vessels. However, the trigger and underlying mechanism responsible for the growth of lymphatic vessels in diseased kidney remain poorly defined. Here, we report that tubule-derived sonic hedgehog (Shh) ligand is a novel lymphangiogenic factor that plays a crucial role in mediating lymphatic endothelial cell proliferation and expansion. Shh was induced in renal tubular epithelium in various models of fibrotic chronic kidney disease, and this was accompanied by an expansion of lymphatic vessels in adjacent areas. In vitro, Shh selectively promoted the proliferation of human dermal lymphatic endothelial cells (HDLECs) but not human umbilical vein endothelial cells, as assessed by cell counting, MTT assay, and bromodeoxyuridine incorporation. Shh also induced the expression of vascular endothelial growth factor receptor-3, cyclin D1, and proliferating cell nuclear antigen in HDLECs. Shh did not affect the expression of Gli1, the downstream target and readout of canonical hedgehog signaling, but activated ERK-1/2 in HDLECs. Inhibition of Smoothened with small-molecule inhibitor or blockade of ERK-1/2 activation abolished the lymphatic endothelial cell proliferation induced by Shh. In vivo, inhibition of Smoothened also repressed lymphangiogenesis and attenuated renal fibrosis. This study identifies Shh as a novel mitogen that selectively promotes lymphatic, but not vascular, endothelial cell proliferation and suggests that tubule-derived Shh plays an essential role in mediating lymphangiogenesis after kidney injury.


Sign in / Sign up

Export Citation Format

Share Document