Abstract 49: Over-activation Of Natural Killer Cells Due To Dysfunction Of Cd16-mediated Signaling In Adamts13-deficient Ttp Patients With A History Of Relapse

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
FANG ZHOU ◽  
Darise Farris

Thrombotic thrombocytopenic purpura (TTP) is a rare life-threaten vascular autoimmune disease. There is no effective method to treat it in clinical trials since pathogenesis of TTP has not been fully elucidated. Here we investigate the role of NK cells in relapse development of TTP. Our results showed that the frequencies of CD3 − CD56 dim CD16 − and CD3 − CD56 bri CD16 − NK cells are increased in TTP patients with a history of relapse. Expression of CD107a, granzyme A and IFN-γ by CD3 − CD56 dim NK cells following in vitro stimulation with PMA/ionomycin / monensin is improved in the relapse group, compared with those on NK cells derived from TTP patients without relapse development. NK cells isolated from TTP patients with a history of relapse indicated stronger cytotoxicity to target K562 cells than those of NK cells derived from TTP patients without relapse development, suggesting prior activation of NK cells in vivo . Treatment with anti-human CD16 antibody up-regulates cytotoxicity of NK cells derived from TTP patients without relapse development. However, Anti-human CD16 antibody treatment does not affect cytotoxicity of NK cells isolated from TTP patients with a history of relapse, suggesting inability of CD16-mediated signaling in NK cells derived from TTP patients with relapse development. These data provide evidence of altered NK cell activation and/or licensing in TTP patients with a history of relapse modulated by CD16-mediated signaling and a new avenue of investigation into mechanisms of TTP immunopathogenesis.

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 9521-9521
Author(s):  
H. N. Lode ◽  
Y. Zeng ◽  
S. Fest ◽  
G. Gaedicke

9521 Background: Fractalkine (FKN) is a unique CX3C chemokine (CX3CL1) known to induce adhesion and migration of leukocytes mediated by a membrane-bound and a soluble form. Methods: We found that FKN is expressed in >90% of 68 neuroblastoma (NB) samples as determined by cDNA microarray analysis. FKN expression was inversely correlated with MYCN amplification, suggesting a higher expression of FKN in MYCN non amplified tumors. We characterized the effect of FKN in the neuroblastoma microenvironment in a mouse model. We demonstrate that FKN released from NB cells mediate migration and adhesion of CD4+-, CD8+- and NK- cells and subsequent secretion of IFN-γ, in vitro and in vivo. However, the presence of FKN in NB microenvironments did not result in significant anti-NB activity. Results: Targeting of IL-2 into the NB microenvironment using anti-ganglioside GD2 antibody cytokine fusion proteins (ch14.18-IL-2) is currently under clinical evaluation. We investigated a the role of FKN in this context. For this purpose, IL-2 was targeted to GD2 positive NB microenvironments secreting FKN. Only mice bearing FKN and IL2 enriched NB microenvironments exhibited a reduction in primary tumor growth and a complete eradication of experimental liver metastases, in contrast to controls with only FKN or IL-2 enriched NB. This effect was specific since a non-specific antibody-IL-2 fusion protein ch225-IL-2 was ineffective. The mechanisms involved included NK-cell activation by targeted IL-2 into FKN rich NB as indicated by the enhancement of NK-cell mediated lysis using YAC-1 cells as targeted cells. The depletion of NK cells in vivo inhibited the therapeutic effect. Furthermore, co-culture of NXS2-FKN cells and NK cells in vitro induced the expression of IFN-γ by NK cells. However, the depletion of CD8+ T-cells in vivo abrogated the therapeutic effect, and these effector cells showed the highest cytolytic activity against NXS2 target cells in vitro. Finally, only the FKN and IL-2 enriched NB microenvironment resulted in T-cell activation and the release of proinflammatory cytokines. Conclusions: In conclusion our data suggest that targeted IL-2 therapy of FKN rich NB associated with MYCN non-amplified tumors may result in T-cell mediated immune responses. No significant financial relationships to disclose.


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3928-3928
Author(s):  
Michele Levin ◽  
Janet Ayello ◽  
Frances Zhao ◽  
Andrew Stier ◽  
Lauren Tiffen ◽  
...  

Abstract Abstract 3928 Background: NK cells play a role in reducing relapse in hematological malignancy following AlloSCT (Dunbar et al, Haematologica, 2008). NK cell limitations include lack of tumor recognition and/or limited numbers of viable and functional NK cells (Shereck/Cairo et al, Ped Bld Can, 2007). NK ACI provide safe and effective therapy against tumor relapse; yet NK cells are limited to specific cancer types and not all patients demonstrate optimal response (Ruggieri et al. Science, 2002; Ljunggren et al. Nat Rev Immuno, 2007). To circumvent these limitations, methods to expand and activate PBMNCs with genetically engineered K562 cells expressing membrane bound IL-15 and 41BB ligand (K562-mbIL15-41BBL [modK562]; Imai/Campana et al, Blood, 2005) have shown to significantly increase NK cells in number and maintain heterogeneous KIR expression (Fusaki/Campana et al BJH, 2009). We have shown that CB NK cells can be activated/expanded and exhibit enhanced cytolytic activity when cultured in a cytokines/antibody cocktail (Ayello/Cairo et al, BBMT, 2006; Exp Heme, 2009). Objective: To evaluate CBNK expansion, activation, cytolytic mechanism and function against Burkitt lymphoma (BL) tumor target and its influence on NK cell mediated in-vitro and in-vivo cytotoxicity in NOD-SCID mice following stimulation with modK562 cells (generously supplied by D.Campana, St Jude's Children's Hospital, Memphis, Tx). Methods: Following 100GY irradiation, modK562cells were incubated 1:1 with CBMNCs in RPMI+IL-2 (10IU/ml) for 7 days in 5%CO2, 37°C. NK activation marker (LAMP-1), perforin and granzyme B were determined by flow cytometry. Cytotoxicty was determined via europium assay at 20:1 E:T ratio with Ramos (BL) tumor targets (ATCC). The mammalian expression construct (ffLucZeo-pcDNA (generously supplied by L.Cooper, MD, PhD) was transfected to BL cells using lipofectin and selected by zeocin for stable transfection. Six week old NOD-SCID mice received 5×106 BL cells subcutaneously. Upon engraftment, xenografted NOD-SCID mice were divided in 5 groups: injected with PBS (control), BL only, 5×106 wildtype (WT) K562 expanded (E) CBNK cells, modK562 expanded (E) CB NK cells (5×106) and modK562 expanded (E) CBNK cells (5×107). Ex-vivo ECBNK cells were injected weekly for 5 weeks and xenografted NOD-SCID mice were monitored by volumetric measurement of tumor size (Tomayko/Reynolds, Can Chemother Pharmac, 1989), bioluminescent imaging (Inoue et al Exp Heme, 2007) and survival. The survival distribution for each group was estimated using the Fisher exact test. Results: On Day 0, NK cells (CD56+/3-) population was 3.9±1.3%. After 7 days, modK562 expanded CBNK cells was significantly increased compared to WTK562 and media alone (72±3.9 vs 43±5.9 vs 9±2.4%, p<0.01). This represented a 35-fold or 3374±385% increase of the input NK cell number. This was significantly increased compared to WTK562 (1771±300%, p<0.05). ModK562 ECBNK cells demonstrated increased perforin and granzyme B expression compared to WTK562 (42±1.5 vs 15±0.5%,p<0.001; 22±0.5 vs 11±0.3%,p<0.001, respectively). Cytotoxicity was against BL tumor targets was significantly increased (42±3 vs 18±2%,p<0.01), along with NK activation marker expression, CD107a (p<0.05). At 5 weeks, in-vivo studies demonstrated increased survival of NOD-SCID mice receiving both 5×106 and 5×107 modK562 ECBNK cells when compared to those with no treatment (p=0.05, p=0.0007, respectively). There was no difference in survival when comparing mice that received 5×106 vs 5×107 modK562 ECBNK cells (p=0.0894) at 5 weeks. Tumor volume of mice receiving either dose of modK562 ECBNK cells was significantly less than those receiving WTK562 ECBNK cells (1.92±0.57 and 0.37±0.05 vs 3.41±0.25, p=0.0096 and p=0.0001, respectively). Conclusions: CBMNCs stimulated and expanded with modK562 cells results in significant expansion of CBNK cells with enhanced in-vitro cytotoxicity, significant receptor expression of NK activation marker (LAMP-1), and perforin and granzyme B. Furthermore, modK562 ECBNK cells leads to increased survival and lower tumor burden of NOD-SCID mice xenografted with BL. Future directions include modK562 ECBNK cells to be genetically modified to express chimeric antigen receptor CD20 (MSCV-antiCD20-41BB-CD3 ζ) against CD20+ hematologic malignancies for future studies to evaluate whether targeting enhances in-vitro and in-vivo cytotoxicity. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Y Vicioso ◽  
K Zhang ◽  
Parameswaran Ramakrishnan ◽  
Reshmi Parameswaran

AbstractNatural Killer (NK) cells are cytotoxic lymphocytes critical to the innate immune system. We found that germline deficiency of NF-kB c-Rel results in a marked decrease in cytotoxic function of NK cells, both in vitro and in vivo, with no significant differences in the stages of NK cell development. We found that c-Rel binds to the promoters of perforin and granzyme B, two key proteins required for NK cytotoxicity, and controls their transactivation. We generated a NK cell specific c-Rel conditional knockout to study NK cell intrinsic role of c-Rel and found that both global and conditional c-Rel deficiency leads to decreased perforin and granzyme B expression and thereby cytotoxic function. We also confirmed the role of c-Rel in perforin and granzyme B expression in human NK cells. c-Rel reconstitution rescued perforin and granzyme B expressions in c-Rel deficient NK cells and restored their cytotoxic function. Our results show a previously unknown role of c-Rel in transcriptional regulation of perforin and granzyme B expressions and control of NK cell cytotoxic function.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 197 ◽  
Author(s):  
Wei Zhang ◽  
Takasi Okimura ◽  
Tatsuya Oda ◽  
Jun-O Jin

Natural marine polysaccharides have demonstrated immune stimulatory effects in both mice and humans. Our previous study compared the ability of ascophyllan and fucoidan to activate human and mouse dendritic cells (DCs). In this study, we further examined the effect of ascophyllan on the activation of mouse natural killer (NK) cells in vivo and in vitro and compared it to that of fucoidan, a well-studied natural marine polysaccharide. Specifically, administration of ascophyllan to C57BL/6 mice increased the number of NK cells in the spleen when compared to the number in PBS-treated mice. Moreover, the number of IFN-γ-producing NK cells and expression of CD69 were markedly upregulated by ascophyllan treatment. Ascophyllan treatment also induced IFN-γ production and CD69 upregulation in isolated NK cells, but did not promote cell proliferation. Finally, ascophyllan treatment increased the cytotoxicity of NK cells against Yac-1 cells. The effects of ascophyllan on NK cell activation were considerably stronger than those of fucoidan. These data demonstrated that ascophyllan promotes NK cell activation both in mice and in vitro, and its stimulatory effect on NK cells is stronger than that of fucoidan.


2008 ◽  
Vol 205 (10) ◽  
pp. 2419-2435 ◽  
Author(s):  
Hailong Guo ◽  
Asanga Samarakoon ◽  
Bart Vanhaesebroeck ◽  
Subramaniam Malarkannan

Phosphatidylinositol 3-kinases (PI3Ks) play a critical role in regulating B cell receptor– and T cell receptor–mediated signaling. However, their role in natural killer (NK) cell development and functions is not well understood. Using mice expressing p110δD910A, a catalytically inactive p110δ, we show that these mice had reduced NK cellularity, defective Ly49C and Ly49I NK subset maturation, and decreased CD27High NK numbers. p110δ inactivation marginally impaired NK-mediated cytotoxicity against tumor cells in vitro and in vivo. However, NKG2D, Ly49D, and NK1.1 receptor–mediated cytokine and chemokine generation by NK cells was severely affected in these mice. Further, p110δD910A/D910A NK cell–mediated antiviral responses through natural cytotoxicity receptor 1 were reduced. Analysis of signaling events demonstrates that p110δD910A/D910A NK cells had a reduced c-Jun N-terminal kinase 1/2 phosphorylation in response to NKG2D-mediated activation. These results reveal a previously unrecognized role of PI3K-p110δ in NK cell development and effector functions.


2004 ◽  
Vol 200 (3) ◽  
pp. 287-295 ◽  
Author(s):  
Francesca Granucci ◽  
Ivan Zanoni ◽  
Norman Pavelka ◽  
Serani L.H. van Dommelen ◽  
Christopher E. Andoniou ◽  
...  

Dendritic cells (DCs) play a predominant role in activation of natural killer (NK) cells that exert their functions against pathogen-infected and tumor cells. Here, we used a murine model to investigate the molecular mechanisms responsible for this process. Two soluble molecules produced by bacterially activated myeloid DCs are required for optimal priming of NK cells. Type I interferons (IFNs) promote the cytotoxic functions of NK cells. IL-2 is necessary both in vitro and in vivo for the efficient production of IFNγ, which has an important antimetastatic and antibacterial function. These findings provide new information about the mechanisms that mediate DC–NK cell interactions and define a novel and fundamental role for IL-2 in innate immunity.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4714-4714 ◽  
Author(s):  
Su Su ◽  
Dawn M Betters ◽  
Muthalagu Ramanathan ◽  
Keyvan Keyvanfar ◽  
Aleah Smith ◽  
...  

Abstract Abstract 4714 The development of an efficient method to genetically modify natural killer (NK) cells could be used to characterize NK cell differentiation, acquisition of self-tolerance, tumor trafficking in vivo, as well as to manipulate NK cells to enhance their activity against infectious diseases and tumors. Although HIV-1 based lentiviral vectors (LVs) have been used to efficiently transfer genes into human T-cells, little data exists on LV transduction of either fresh or in vitro expanded human NK cells or its effects on NK cell phenotype and cytolytic function. In this study, we used an HIV-based LV expressing enhanced green fluorescence protein (EGFP) driven by a murine stem cell virus long terminal repeat (MSCV-LTR) promoter to transduce CD3− and CD56+ and/or CD16+ human NK cells that were either resting, IL-2 activated, or expanded in vitro using an irradiated EBV-LCL feeder cell line. We observed that resting NK cells were difficult to transduce with LVs, even at high multiplicities of infection (MOI), with transduction efficiencies (TE) in the range of only 3–14%. The efficiency of LV transduction improved when the NK cells were pre-stimulated in vitro with IL-2: TE improved to 21±0.2% in NK cells cultured for 24 hours in media containing IL-2 (200 U/mL) and 28.7±12.9% in NK cells that underwent in vitro expansion over 9 days prior to transduction using irradiated EBV-LCL feeder cells and media containing IL-2 (200U/mL). Subsequently, we evaluated incremental MOIs (3-200) to optimize LV transduction of expanded NK cells; optimal transduction was achieved using a spinoculation protocol at a MOI of 25 which resulted in the highest transduction efficiencies with the least amount of cell death. Increasing the MOI above this level resulted in a small increase in transduction, but was offset by an increase in NK cell apoptosis/death. Using a one-round, non-spinoculation protocol and an MOI of 30, we obtained a median transduction efficiency of 29% (range 16–41) with excellent retention of NK cell viability. This optimized protocol was used to transduce expanded NK cells with a LV vector encoding an shRNA targeting a region of the NK cell inhibitory receptor transcript NKG2A. Following transduction, surface expression of NKG2A decreased significantly on expanded NK cells compared to non-transduced expanded NK cells and “scramble transduced” LV controls; at a MOI of 10, the MFI of NKG2A on expanded human NK cells decreased 35% compared to non-transduced and LV transduced scramble controls (median MFI 428, 673, 659 in shRNA, non-transduced and scramble LV control transduced NK cells respectively). A comparison of transduction efficiencies using LVs expressing EGFP driven by MSCV-LTR, EF1a, and Ubi promoters showed MSCV-LTR mediated the highest level of gene expression in expanded NK cells. Transduced NK cells maintained stable EGFP transgene expression in vitro, which peaked 5 days following LV transduction and remained stable for an additional 9 days. The phenotype of lentiviral transduced NK cells was similar to non-transduced NK cells. Specifically, expression of CD56, CD16, granzyme A and B, perforin, the inhibitory receptors NKG2A, KIR3DL1, KIR3DL2, and KIR2DL1/DL2, and the activating receptors NKG2D, NCRs NKp46, and NKp30 were not altered in either fresh or expanded NK cells following LV transduction, although we did observe a significant reduction in NKp44 expression in LV transduced cells (22% compared to 50% on untransduced NK cells; 0.02). Furthermore, NK cell function, as assessed by cytokine production and cytotoxicity vs tumor targets was not altered in LV transduced NK cells. A 51Cr release cytotoxicity assay showed GFP+ NK cells, flow sorted following LV transduction of expanded NK cells, had similar cytotoxicity against K562 cells and human renal cell carcinoma cells (RCC) compared to non-transduced expanded NK cell controls (figures). In conclusion, we show that an HIV-1 based lentiviral vector driven by a MSCV-LTR, mediated efficient and stable gene transfer in IL-2 activated and in vitro expanded human NK cells. This study provides valuable insights for methods to optimize the long-term expression of LV transduced genes in human NK cells which could be used to improve their anti-tumor function in vivo. Target: K562 cells Target: RCC cell line Disclosures: No relevant conflicts of interest to declare.


2008 ◽  
Vol 205 (5) ◽  
pp. 1213-1225 ◽  
Author(s):  
Erwan Mortier ◽  
Tammy Woo ◽  
Rommel Advincula ◽  
Sara Gozalo ◽  
Averil Ma

Natural killer (NK) cells are innate immune effectors that mediate rapid responses to viral antigens. Interleukin (IL)-15 and its high affinity IL-15 receptor, IL-15Rα, support NK cell homeostasis in resting animals via a novel trans presentation mechanism. To better understand how IL-15 and IL-15Rα support NK cell activation during immune responses, we have used sensitive assays for detecting native IL-15 and IL-15Rα proteins and developed an assay for detecting complexes of these proteins. We find that IL-15 and IL-15Rα are preassembled in complexes within the endoplasmic reticulum/Golgi of stimulated dendritic cells (DCs) before being released from cells. IL-15Rα is required for IL-15 production by DCs, and IL-15 that emerges onto the cell surface of matured DCs does not bind to neighboring cells expressing IL-15Rα. We also find that soluble IL-15–IL-15Rα complexes are induced during inflammation, but membrane-bound IL-15–IL-15Rα complexes, rather than soluble complexes, support NK cell activation in vitro and in vivo. Finally, we provide in vivo evidence that expression of IL-15Rα specifically on DCs is critical for trans presenting IL-15 and activating NK cells. These studies define an unprecedented cytokine–receptor biosynthetic pathway in which IL-15Rα serves as a chaperone for IL-15, after which membrane-bound IL-15Rα–IL-15 complexes activate NK cells via direct cell–cell contact.


Sign in / Sign up

Export Citation Format

Share Document