Abstract 3856: Adoptive Transfer Of Regulatory T Cells Confers Long Term Neuroprotection Against Cerebral Ischemic Stroke

Stroke ◽  
2012 ◽  
Vol 43 (suppl_1) ◽  
Author(s):  
Peiying Li ◽  
Xiaoming Hu ◽  
Yu Gan ◽  
Feng Zhang ◽  
Yanqin Gao ◽  
...  

Stroke is the leading cause of serious long-term disability in adults. Activation and mobilization of CD4+CD25+ regulatory T cells (Tregs) is an intrinsic mechanism the body uses to restrict pro-inflammatory response, one of the well-established contributing factors for secondary neuronal injury and long-term neurological deficits after stroke. The current study explores the protective effect of Tregs adoptive therapy against post-ischemic brain damage and investigated the mechanisms underlying the action of Tregs. Using a mouse model of focal transient ischemia, we found that intravenous injections of Tregs (2 x 10 6 /animal) within 24 hours (2, 6, and 24 hours) after ischemia resulted in marked reduction of brain infarct. The maximal protection occurred upon earlier Tregs transfer with 2-hour delay after MCAO, which resulted in approximately 30% reduction of infarct volume. Post-ischemic sensorimotor dysfunction significantly improved during both the acute and late recovery after MCAO in Treg-treated mice as assessed by corner test, forelimb placing and cylinder test up to 28 days after ischemic stroke. Furthermore, Tregs treatment inhibited the up-regulation of IL-6, IL-1β, IL-17 and TNF-α in the ischemic brain and mitigated the cerebral infiltration of peripheral immune cells, including neutrophil, macrophage and T cells early after MCAO. Taken together, our study demonstrates that adoptive therapy with Tregs is a novel and potent cell-based therapy targeting post-stroke inflammatory dysregulation.

2021 ◽  
Vol 15 ◽  
Author(s):  
Yuhualei Pan ◽  
Dan Tian ◽  
Huan Wang ◽  
Yushang Zhao ◽  
Chengjie Zhang ◽  
...  

Perforin-mediated cytotoxicity plays a crucial role in microbial defense, tumor surveillance, and primary autoimmune disorders. However, the contribution of the cytolytic protein perforin to ischemia-induced secondary tissue damage in the brain has not been fully investigated. Here, we examined the kinetics and subpopulations of perforin-positive cells and then evaluated the direct effects of perforin-mediated cytotoxicity on outcomes after ischemic stroke. Using flow cytometry, we showed that perforin+CD45+ immune cells could be detected at 12 h and that the percentage of these cells increased largely until on day 3 and then significantly declined on day 7. Surprisingly, the percentage of Perforin+CD45+ cells also unexpectedly increased from day 7 to day 14 after ischemic stroke in Perforin1-EGFP transgenic mice. Our results suggested that Perforin+CD45+ cells play vital roles in the ischemic brain at early and late stages and further suggested that Perforin+CD45+ cells are a heterogeneous population. Surprisingly, in addition to CD8+ T cells, NK cells, and NKT cells, central nervous system (CNS)-resident immune microglia, which are first triggered and activated within minutes after ischemic stroke in mice, also secreted perforin during ischemic brain injury. In our study, the percentage of perforin+ microglia increased from 12 h after ischemic stroke, increased largely until on day 3 after ischemic stroke, and then moderately declined from days 3 to 7. Intriguingly, the percentage of perforin+ microglia also dramatically increased from days 7 to 14 after ischemic stroke. Furthermore, compared with wild-type littermates, Perforin 1–/– mice exhibited significant increases in the cerebral infarct volume, neurological deficits, and neurogenesis and inhibition of neurotoxic astrogliosis. Interestingly, the number of CD45+CD3+ T cells was significantly decreased in Perforin 1–/– mice compared with their wild-type littermates, especially the number of γδ T cells. In addition, Perforin 1–/– mice had lower levels of IL-17 than their wild-type littermates. Our results identified a critical function of perforin-mediated neurotoxicity in the ischemic brain, suggesting that targeting perforin-mediated neurotoxicity in brain-resident microglia and invading perforin+CD45+ immune cells may be a potential strategy for the treatment of ischemic stroke.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Haiyue Zhang ◽  
Peiying Li ◽  
Yanqin Gao ◽  
Jun Chen ◽  
Xiaoming Hu

Background and Purpose: Our previous work documents the transfer of regulatory T cells (Tregs) in rodent models of ischemic stroke protects acute ischemic brain injury by regulating poststroke inflammatory response and thereby ameliorating BBB disruption. However, the low number of Tregs restricts the clinical feasibility of Treg transfer. Recently, in vivo expansion of Tregs with IL-2/IL-2-antibody complex (IL-2/IL-2Ab) was validated protective in autoimmune diseases model,renal ischemia reperfusion model and atherosclerosis. Here we investigate the beneficial effect of IL-2/IL-2Ab on ischemic stroke and decipher the underlying mechanisms. Methods: IL-2/IL-2Ab or isotype IgG was ip injected into C57/BL6 mice for 3 consecutive days. The mice are then subjected to 60-minute middle cerebral artery occlusion (MCAO) or sham operation. Brain infarction, inflammation and neurological performance was assessed up to 7 days after reperfusion. Results: Flow cytometry analysis reveals a marked increase of CD4+CD25+Foxp3+ Tregs in the blood, lymph nodes and spleens collected from IL-2/IL-2Ab-treated mice as compared to those from isotype-treated controls. Such Treg elevation could be observed since 3 days after IL-2/IL-2Ab injection and lasts until 7 days after MCAO. Immunochemistry staining confirms the increased number of Foxp3+ cells in the spleen at 3 days after MCAO in IL-2/IL-2Ab-treated mice. IL-2/IL-2Ab promotes function recovery up to 7 days after stroke, as revealed by significantly improved performance in corner test (n=6-9, ***p<0.001), rotarod test (n=8, **p<0.01), cylinder test (n=8, **p<0.01) and adhesive removal test (n=3, *p<0.05). Quantification of TTC staining and microtubule-associated protein (MAP2) staining shows reductions in brain infarct volume at 3 days (n=5-9,*p<0.05) and 7 days (n=7-9,*p<0.01), respectively, after MCAO. Meanwhile, we observed reduced infiltration of peripheral immune cells (CD3+ T cells, MPO+ neutrophils and F4/80+ macrophages) into the ischemic brain. Conclusions: Our finding suggests that IL-2/IL-2Ab treatment is a novel and clinical feasible immune therapy to expand Treg population in vivo, reduce post-stroke inflammatory responses and protect against ischemic brain injury.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 330-330
Author(s):  
Anil Chauhan ◽  
Mohammad M Khan ◽  
Chintan Gandhi ◽  
Neelam Chauhan ◽  
Asgar Zaheer ◽  
...  

Abstract Abstract 330 Background: Fibronectin (FN) is a dimeric glycoprotein that plays an important role in several cellular processes, such as embryogenesis, malignancy, hemostasis, wound healing and maintenance of tissue integrity. FN is a ligand for many members of the integrin family (e.g. αIIbβ3, α5β1, α4β1, α9β1, αvβ3 and αvβ5) and also binds to thrombosis-related proteins including heparin, collagen and fibrin. FN generates protein diversity as a consequence of alternative processing of a single primary transcript. Two forms of FN exist; soluble plasma FN (pFN), which lacks the alternatively-spliced Extra Domain A (EDA); and insoluble cellular FN (cFN), which contains EDA. FN containing EDA (EDA+FN) is normally absent in plasma of human and mouse but EDA+FN has been found in patients with vascular injury secondary to vasculitis, sepsis, acute major trauma or ischemic stroke. We tested the hypothesis that elevated levels of plasma EDA+FN increase brain injury in an experimental model of ischemic stroke in mice. Model and Method: We used two genetically modified mouse strains: EDA+/+ mice contain optimized spliced sites at both splicing junctions of the EDA exon and constitutively express only EDA+FN, whereas EDA-/- mice contain an EDA-null allele of the EDA exon and express only FN lacking EDA. Control EDAwt/wt mice contain the wild-type FN allele. Transient focal cerebral ischemia was induced by 60 minutes of occlusion of the right middle cerebral artery with a 7.0 siliconized filament in male mice (8-10 weeks in age). Mice were anesthetized with 1–1.5% isoflurane mixed with medical air. Body temperature was maintained at 37°C ± 1.0 using a heating pad. Laser Doppler flowmetry was used to confirm induction of ischemia and reperfusion. At 23 hours after MCAO, mice were evaluated for neurological deficits as a functional outcome and were sacrificed for quantification of infarct volume. For morphometric measurement eight 1 mm coronal sections were stained with 2% triphenyl-2, 3, 4-tetrazolium-chloride (TTC). Sections were digitalized and infarct areas were measured blindly using NIS elements. Result: In EDA+/+ mice the percentage of infarct volume (mean ± SEM: 37.25 ± 4.11, n= 12,) in the ipsilateral (ischemic) hemisphere was increased by approximately two-fold compared to EDA wt/wt mice (mean ± SEM: 22.33 ± 3.39, n=11; P< 0.05, ANOVA) or EDA-/- mice (mean ± SEM: 21.72 ± 2.94, n=9). Regional cerebral blood flow during ischemia was not different among groups as assessed by laser Doppler flowmetry. The percentage increase in infarct volume in the EDA+/+ mice correlated well with severe neurological deficits (motor-deficit assessed by a four-point neurological score scale) compared to EDA wt/wt or EDA-/- mice. Because both thrombosis and inflammation contributes to brain injury during ischemic stroke, we investigated the time to form an occlusive thrombus in ferric-chloride carotid artery injury model by intravital microscopy. EDA+/+ mice demonstrated significantly faster time to occlusion (mean ± SEM: 12.35 ± 1.51 n=12,) compared to EDAwt/wt (Mean ± SEM: 17.27 ± 1.72 min, n=13, P<0.05, ANOVA) or EDA-/- (Mean ± SEM: 15.61 ± 1.76, n=11) mice. Additionally, the inflammatory response in the ischemic region was increased by two fold in EDA+/+ mice compared to EDA wt/wt and EDA-/- mice as sensed by myeloperoxidase activity and immunohistochemical analysis of neutrophils. Conclusion: EDA-containing FN is pro-thrombotic and pro-inflammatory, and aggravates ischemic brain injury in an experimental model of stroke in mice. The presence of EDA+FN in plasma may be a risk factor for vascular injury secondary to ischemic stroke. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
María Santamaría-Cadavid ◽  
Emilio Rodríguez-Castro ◽  
Manuel Rodríguez-Yáñez ◽  
Susana Arias-Rivas ◽  
Iria López-Dequidt ◽  
...  

Abstract Background: Recent preclinical studies have shown that regulatory T cells (Treg) play a key role in the immune response after ischemic stroke (IS). However, the role of Treg in human acute IS has been poorly investigated. Our aim was to study the relationship between circulating Treg and outcome in human IS patients. Methods: A total of 204 IS patients and 22 control subjects were recruited. The main study variable was good functional outcome at 3 months (modified Rankin scale ≤2) considering infarct volume, Early Neurological Deterioration (END) and risk of infections as secondary variables. The percentage of circulating Treg was measured at admission, 48, 72h and at day 7 after stroke onset. Results: Circulating Treg levels were higher in IS patients compared to control subjects. Treg at 48h were independently associated with good functional outcome (OR, 3.5; CI: 1.9-7.8) after adjusting by confounding factors. Patients with lower Treg at 48h showed higher frequency of END and risk of infections. In addition, a negative correlation was found between circulating Treg at 48h (r=-0.414) and 72h (r=-0.418) and infarct volume. Conclusions: These findings suggest that Treg may participate in the recovery of IS patients. Therefore, Treg may be considered a potential therapeutic target in acute ischemic stroke.


Stroke ◽  
2016 ◽  
Vol 47 (suppl_1) ◽  
Author(s):  
Kai Diederich ◽  
Antje Schmidt ◽  
Jan-Kolja Strecker ◽  
Wolf-Rüdiger Schäbitz ◽  
Jens Minnerup

Introduction: Inflammation plays a critical role in the pathogenesis of ischemic stroke. The CNS responds to ischemic injury with an inflammatory process, characterized by an infiltration of inflammatory cells. Particularly T cells exhibit a great impact on early stroke outcome as recent studies showed that ablation of these cells decrease infarct size and improve neurological deficits in the acute phase after stroke. However, the role of T cells in the sub-acute and chronic phase after stroke is unknown. T cells are essential for effective neurogenesis and angiogenesis, mechanisms that are integral for successful regeneration after stroke. We assessed the hypothesis that T cells influence cellular mechanisms of post-ischemic neuroregeneration and consequently affect functional and structural recovery. Methods: 24 wild type (wt) and 11 RAG1 -/- mice were subjected to photothrombotic ischemia, a subset of 12 wt and 6 RAG1 -/- animals underwent training in motorized running wheels starting at day 3 following ischemia until the end of the experiment on day 28. Sensorimotor and cognitive testing was applied to quantify the recovery process. To label newly generated neurons, 5-Chloro-2′-deoxyuridine (CldU) and iododeoxyuridine (IdU) were administered at days 1 and 2 (CldU) and once weekly until day 28 (IdU) after ischemia. In a subsequent experiment, 17 RAG1 -/- mice were subjected to photothrombotic ischemia and underwent training, a subset of 10 animals received an adoptive transfer of T cells. Functional testing and cellular labeling were carried out in analogy to the first experiment. Results: Training improved recovery from sensorimotor and cognitive deficits following cortical ischemia in wt animals and increased the generation of new neurons in the ischemic brain. Rehabilitative training did not induce functional recovery in RAG1 -/- animals and had no effect on the generation of neurons. Adoptive transfer of T cells into the immunodeficient mice restored the ability for regeneration. Conclusion: T cells play an essential role in the functional and structural regeneration following ischemic brain injury. These results provide new clues on the complex mechanism by which immune cells impact different stages of the pathogenesis of ischemic stroke.


2019 ◽  
Author(s):  
María Santamaría-Cadavid ◽  
Emilio Rodríguez-Castro ◽  
Manuel Rodríguez-Yáñez ◽  
Susana Arias-Rivas ◽  
Iria López-Dequidt ◽  
...  

Abstract Background: Recent preclinical studies have shown that regulatory T cells (Treg) play a key role in the immune response after ischemic stroke (IS). However, the role of Treg in human acute IS has been poorly investigated. Our aim was to study the relationship between circulating Treg and outcome in human IS patients. Methods: A total of 204 IS patients and 22 control subjects were recruited. The main study variable was good functional outcome at 3 months (modified Rankin scale ≤2) considering infarct volume, Early Neurological Deterioration (END) and risk of infections as secondary variables. The percentage of circulating Treg was measured at admission, 48, 72h and at day 7 after stroke onset. Results: Circulating Treg levels were higher in IS patients compared to control subjects. Treg at 48h were independently associated with good functional outcome (OR, 3.5; CI: 1.9-7.8) after adjusting by confounding factors. Patients with lower Treg at 48h showed higher frequency of END and risk of infections. In addition, a negative correlation was found between circulating Treg at 48h (r=-0.414) and 72h (r=-0.418) and infarct volume. Conclusions: These findings suggest that Treg may participate in the recovery of IS patients. Therefore, Treg may be considered a potential therapeutic target in acute ischemic stroke.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Li ◽  
Anthony W. Frei ◽  
Irayme M. Labrada ◽  
Yanan Rong ◽  
Jia-Pu Liang ◽  
...  

Allogeneic islet transplantation is a promising cell-based therapy for Type 1 Diabetes (T1D). The long-term efficacy of this approach, however, is impaired by allorejection. Current clinical practice relies on long-term systemic immunosuppression, leading to severe adverse events. To avoid these detrimental effects, poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) were engineered for the localized and controlled release of immunomodulatory TGF-β1. The in vitro co-incubation of TGF-β1 releasing PLGA MPs with naïve CD4+ T cells resulted in the efficient generation of both polyclonal and antigen-specific induced regulatory T cells (iTregs) with robust immunosuppressive function. The co-transplantation of TGF-β1 releasing PLGA MPs and Balb/c mouse islets within the extrahepatic epididymal fat pad (EFP) of diabetic C57BL/6J mice resulted in the prompt engraftment of the allogenic implants, supporting the compatibility of PLGA MPs and local TGF-β1 release. The presence of the TGF-β1-PLGA MPs, however, did not confer significant graft protection when compared to untreated controls, despite measurement of preserved insulin expression, reduced intra-islet CD3+ cells invasion, and elevated CD3+Foxp3+ T cells at the peri-transplantation site in long-term functioning grafts. Examination of the broader impacts of TGF-β1/PLGA MPs on the host immune system implicated a localized nature of the immunomodulation with no observed systemic impacts. In summary, this approach establishes the feasibility of a local and modular microparticle delivery system for the immunomodulation of an extrahepatic implant site. This approach can be easily adapted to deliver larger doses or other agents, as well as multi-drug approaches, within the local graft microenvironment to prevent transplant rejection.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Mohammad M Khan ◽  
Asgar Zaheer

Background and purpose: Glia maturation factor (GMF), a brain specific protein, discovered and characterized in our laboratory, induces expression of proinflammatory cytokines/ chemokines in the central nervous system (CNS). Recently, it has been demonstrated that deficiency of GMF mitigates neuronal damage in tissue culture cell and animal models of neurodegeneration. Since, GMF expression in brain enhances inflammation; we tested the hypothesis that deficiency of GMF abrogates the inflammatory responses in experimental model of ischemic stroke. Methods: Transient focal cerebral ischemia was induced by 1 hour of occlusion of the right middle cerebral artery (MCAO) with a 7.0 monofilament in GMF-containing wild type (Wt) and GMF-deficient (GMF-KO) mice. Mice were anesthetized with 1-1.5% isoflurane mixed with medical oxygen. Body temperature was maintained at 37°C ± 1.0 using a heating pad. At 23 hours after ischemia/reperfusion, mice were tested for neurological scores and were sacrificed for the infarct volume and estimation of inflammatory responses. Immunohistochemistry and western blots were used to analyze the expression and activation of glial cells, and levels of NF-κB in ischemic brain hemisphere. Results: We found that levels of GMF significantly increased in MCAO mice compared to saline treated control mice. Next we found that GMF-KO mice exhibited significantly decreased infarct volume, and reduced neurological deficits compared to Wt mice. The decrease in infarct volume and neurological deficits in GMF-KO mice were correlated with a less activation of glia cells, downregulation of NF-κB and suppression of proinflammatory cytokines/chemokine in the ischemic region. Conclusions: In conclusion, present study provides the first evidence that deficiency of GMF reduces brain injury and inflammation after ischemic stroke and suggests that the effective suppression of endogenous GMF-function will prove to be an effective and selective strategy to slow deleterious inflammatory processes in ischemic brain injury. Keywords: Glia maturation factor; Ischemic stroke; Inflammation; Nuclear factor-κB; Cytokines


2021 ◽  
pp. 0271678X2199569
Author(s):  
Sicheng Li ◽  
Yichen Huang ◽  
Yang Liu ◽  
Marcelo Rocha ◽  
Xiaofan Li ◽  
...  

Lymphocytes play an important role in the immune response after stroke. However, our knowledge of the circulating lymphocytes in ischemic stroke is limited. Herein, we collected the blood samples of clinical ischemic stroke patients to detect the change of lymphocytes from admission to 3 months after ischemic stroke by flow cytometry. A total of 87 healthy controls and 210 patients were enrolled, and the percentages of circulating T cells, CD4+ T cells, CD8+ T cells, double negative T cells (DNTs), CD4+ regulatory T cells (Tregs), CD8+ Tregs, B cells and regulatory B cells (Bregs) were measured. Among patients, B cells, Bregs and CD8+ Tregs increased significantly, while CD4+ Tregs dropped and soon reversed after ischemic stroke. CD4+ Tregs, CD8+ Tregs, and DNTs also showed high correlations with the infarct volume and neurological scores of patients. Moreover, these lymphocytes enhanced the predictive ability of long-term prognosis of neurological scores when added to basic clinical information. The percentage of CD4+ Tregs within lymphocytes showed high correlations with both acute and long-term neurological outcomes, which exhibited a great independent predictive ability. These findings suggest that CD4+ Tregs can be a biomarker to predict stroke outcomes and improve existing therapeutic strategies of immunoregulatory lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document