Abstract T P234: Multiparametric Assessment of Longitudinal Changes in Tissue Microstructure in Normal and Abnormal Brain Tissue in Patients with Small Vessel Disease

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Maria D Valdes-Hernandez ◽  
Paul A Armitage ◽  
Eleni Sakka ◽  
Susana Munoz Maniega ◽  
Natalie A Royle ◽  
...  

Background: Volume measures of normal brain tissue and white matter hyperintensities (WMH) between two time points gives limited information about the complex dynamics of tissue change. We evaluated two quantitative parameters that characterise the microstructure of normal-appearing white matter (NAWM), deep grey matter (DGM) and WMH on brain images obtained at presentation with minor stroke and at 1 year to investigate the microstructural changes. Methods: From 182 brain MRI datasets of patients with minor stroke obtained at baseline and 1 year, we extracted the WMH, DGM and NAWM, and separated WMH into less-intense and intense WMH, using validated semi-automatic methods and validated criteria. We registered the binary structural masks to diffusion space and performed a voxel-wise subtraction of the combined masks at both time points. Then we measured fractional anisotropy (FA) and mean diffusivity (MD)(valuex10 -9 m 2 /s) in each tissue mask at baseline and 1 year. Results: WMH volume median increase was 1.4ml (IQR 6.98) mainly due to changes in less-intense WMH: 0.94ml (7.13). WMH that were visible at both time points, ie damage that remained after a year, had the lowest FA= 0.21(0.06) and highest MD=1.05(0.12) at baseline, and were mainly intense WMH at baseline (FA=0.12(0.03), MD=1.55(0.27)). WMH seen only at follow-up, ie that were NAWM at baseline, had the highest FA=0.30(0.06) and lowest MD=0.85 (0.06) at baseline. WMH that were observed only at baseline had intermediate FA=0.26(0.08) and MD=0.90(0.10). NAWM FA=0.26(0.03), MD=0.78(0.04) and DGM FA=0.23(0.03), MD=0.79(0.06) did not change between time points. Conclusions: WMH at baseline can partially evolve to normal-appearing tissues, remain or precede tissue loss. Differentiation between severe and subtle damage and spatial analysis are necessary to characterise the dynamic of WMH evolution.

Neurology ◽  
2017 ◽  
Vol 89 (10) ◽  
pp. 1003-1010 ◽  
Author(s):  
Joanna M. Wardlaw ◽  
Francesca M. Chappell ◽  
Maria del Carmen Valdés Hernández ◽  
Stephen D.J. Makin ◽  
Julie Staals ◽  
...  

Objective:To assess factors associated with white matter hyperintensity (WMH) change in a large cohort after observing obvious WMH shrinkage 1 year after minor stroke in several participants in a longitudinal study.Methods:We recruited participants with minor ischemic stroke and performed clinical assessments and brain MRI. At 1 year, we assessed recurrent cerebrovascular events and dependency and repeated the MRI. We assessed change in WMH volume from baseline to 1 year (normalized to percent intracranial volume [ICV]) and associations with baseline variables, clinical outcomes, and imaging parameters using multivariable analysis of covariance, model of changes, and multinomial logistic regression.Results:Among 190 participants (mean age 65.3 years, range 34.3–96.9 years, 112 [59%] male), WMH decreased in 71 participants by 1 year. At baseline, participants whose WMH decreased had similar WMH volumes but higher blood pressure (p = 0.0064) compared with participants whose WMH increased. At 1 year, participants with WMH decrease (expressed as percent ICV) had larger reductions in blood pressure (β = 0.0053, 95% confidence interval [CI] 0.00099–0.0097 fewer WMH per 1–mm Hg decrease, p = 0.017) and in mean diffusivity in normal-appearing white matter (β = 0.075, 95% CI 0.0025–0.15 fewer WMH per 1-unit mean diffusivity decrease, p = 0.043) than participants with WMH increase; those with WMH increase experienced more recurrent cerebrovascular events (32%, vs 16% with WMH decrease, β = 0.27, 95% CI 0.047–0.50 more WMH per event, p = 0.018).Conclusions:Some WMH may regress after minor stroke, with potentially better clinical and brain tissue outcomes. The role of risk factor control requires verification. Interstitial fluid alterations may account for some WMH reversibility, offering potential intervention targets.


2021 ◽  
Vol 36 (1) ◽  
Author(s):  
Venkatesan Sanjeevi ◽  
V. R. Roopesh Kumar

Abstract Background Achieving hemostasis during neurosurgical procedures within deep seated tumors is of paramount importance. Chemical methods like using ORC and gel foam are preferred to bipolar cautery as bipolar cautery causes thermal injury to the normal eloquent surrounding white matter fibers, thereby causing significant morbidities. In addition to the chemical methods, we advocate a new relatively simple mechanical method by using small size Foley catheter inflated with saline can achieve hemostasis in case of deep locating brain tumor surgery with diffuse oozing from the tumor bed and surrounding white matter tissues are of concern. The balloon tamponade effect of the inflated Foley catheter helps in achieving complete hemostasis without damaging the surrounding normal white matter parenchyma. Case presentation A 52-years-old female admitted with history of progressive drowsiness and altered sensorium. Brain MRI was done showing large right-sided trigonal meningioma. Right parieto-occipital craniotomy was done, through the superior parietal lobe, corticotomy was done, and tumor was reached. Gentle retraction was done using curved blades in between the tumor and normal brain parenchyma. During surgery, following tumor removal, there was a diffuse oozing from tumor bed and the surrounding stretched white matter fibers. Hemostasis was attempted with chemical methods like ORC and gel foam. We avoided bipolar cautery to prevent thermal injury to the normal stretched eloquent white matter, as bleeding was not settled over the period of 45 min using chemical methods. Then, we placed a 10 F size Foley catheter in the tumor cavity and inflated with 6 ml of saline over the period of 10 min. Prior to Foley placement, we coated ORC over the tumor bed and the surrounding white matter. This achieved hemostasis to a significant extent and the same was repeated for another 10 min, and finally, complete hemostasis was achieved. Postoperative period went uneventful. Patient was discharged with good neurological recovery. Conclusion Inflatable Foley catheter balloon is a simple, cost-effective technique for achieving hemostasis in deep white matter tumors in addition to the routinely available hemostatic techniques.


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Hamdi S Adam ◽  
Kamakshi Lakshminarayan ◽  
Wendy Wang ◽  
Faye L Norby ◽  
Thomas Mosley ◽  
...  

Background: Periodontal disease (PD) is associated positively with neurocognitive outcomes. Few studies have investigated the relationship between PD and indicators of brain aging and vascular changes. Hypothesis: PD is associated with greater cerebral small vessel disease, lower total and regional brain volumes and elevated β-amyloid (Aβ) deposition. Methods: We included 6,793 participants who received full-mouth periodontal examinations and tooth counts at Visit 4 (1996-1998) of the Atherosclerosis Risk in Communities Study. We used a modified 3-level version of the Periodontal Profile Class to categorize PD based on severity and extent of gingival inflammation and tissue loss. Among participants who attended Visit 5 (2011-2013), n=1,306 received a brain MRI and n=248 received a PET scan. Total brain volume, Alzheimer’s disease signature volume, and presence of microhemorrhages and cerebral infarctions were ascertained via 3T MRI; Aβ deposition was assessed from PET. We regressed brain volumes on baseline PD status using weighted multivariable linear regression. Presence of cerebrovascular microhemorrhages, infarctions, or elevated Aβ (standardized uptake value ratio>1.2) were regressed on PD category using logistic models. We examined the interaction between Apolipoprotein E ε4 ( APOE ) allele possession and PD categories on the Aβ outcome. Results: Prevalence of baseline periodontal disease was 73% (959/1306) and 87% (206/248) among the MRI and PET subgroups, respectively. PD was not associated with volumetric brain measures nor microhemorrhages. PD was inversely associated with the odds of subcortical and lacunar infarctions. PD and Aβ were not associated in main effect or interaction analyses, although there was a notably stronger association among carriers of APOE . Conclusion: PD was not associated with altered brain structure, cerebral microhemorrhages or elevated Aβ deposition. Counter to the hypothesis, PD and complete tooth loss were inversely associated with cerebral infarctions.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
YANPENG LIU ◽  
YIWEI XIA ◽  
XIAOXIAO WANG ◽  
YI WANG ◽  
LUMENG YANG ◽  
...  

Background and purpose: White matter hyperintensities (WMH) are common in elderly individuals and contribute to age-related cognitive dysfunction. Converging evidence indicates that WMH affect white matter (WM) microstructural integrity in WMH and their penumbra. We aimed to investigate whether this effect extends to the distal WM tracts, and to examine the association between distal WM microstructural integrity and cognitive dysfunction in community-dwelling elderly people. Methods: Brain MRI data including FLAIR and DTI sequences of 174 participants (74 ± 5 years) of the Shanghai Aging Study (SAS) were collected and analyzed. For each participant, WMH lesions were segmented automatically. Eighteen major WM tracts were reconstructed using automated quantitative tractography, and the mean diffusivity (MD) of distal WM tracts (excluding an area of 12 mm around the WMH) was calculated. Multivariable linear regression was performed. Results: A high burden of tract-specific WMH was related to a high MD of distal WM tracts in the forceps major (FMA), anterior thalamic radiations (ATR), cingulum cingulate gyrus (CCG), corticospinal tract (CST), superior longitudinal fasciculus-parietal (SLFP), superior longitudinal fasciculus-temporal (SLFT), and uncinate fasciculus (UNC). Furthermore, a high MD of distal tracts was linked to worse attention and executive function in the forceps minor (FMI), right CCG, left inferior longitudinal fasciculus (ILF), SLFP, SLFT and UNC. Conclusions: The effect of WMH on the microstructural integrity of WM tracts may propagate along tracts to distal regions farther than the penumbra and eventually might affect attention and executive function.


Neurology ◽  
2018 ◽  
Vol 90 (14) ◽  
pp. e1248-e1256 ◽  
Author(s):  
Timothy M. Hughes ◽  
Lynne E. Wagenknecht ◽  
Suzanne Craft ◽  
Akiva Mintz ◽  
Gerardo Heiss ◽  
...  

ObjectiveArterial stiffness has been associated with evidence of cerebral small vessel disease (cSVD) and fibrillar β-amyloid (Aβ) deposition in the brain. These complex relationships have not been examined in racially and cognitively diverse cohorts.MethodsThe Atherosclerosis Risk in Communities (ARIC)–Neurocognitive Study collected detailed cognitive testing for adjudication of dementia and mild cognitive impairment (MCI), brain MRI, and arterial stiffness by pulse wave velocity (PWV, carotid-femoral [cfPWV] and heart-carotid [hcPWV]). The ARIC-PET ancillary study added Aβ imaging using florbetapir ([18F]-AV-45) to obtain standardized uptake volume ratios and defined global Aβ-positivity as standardized uptake volume ratio >1.2. One-SD increase in PWV was related to brain volume, MRI-defined cSVD (e.g., cerebral microbleeds and white matter hyperintensity), and cortical Aβ deposition adjusted for age, body mass index, sex, race, and APOE ε4 status. We examined the cross-sectional relationships including interactions by race, APOE ε4 status, and cognition.ResultsAmong the 320 ARIC-PET participants (76 [5] years, 45% black, 27% MCI), greater central stiffness (hcPWV) was associated with greater Aβ deposition (odds ratio [OR] = 1.31, 95% confidence interval [CI] 1.01–1.71). Greater central stiffness (cfPWV) was significantly associated with having lower brain volumes in Alzheimer disease–susceptible regions (in mm3, β = −1.5 [0.7 SD], p = 0.03) and high white matter hyperintensity burden (OR = 1.6, 95% CI 1.2–2.1). Furthermore, cfPWV was associated with a higher odds of concomitant high white matter hyperintensity and Aβ-positive scans (OR = 1.4, 95% CI 1.1–2.1). These associations were strongest among individuals with MCI and did not differ by race or APOE ε4 status.ConclusionsArterial stiffness, measured by PWV, is an emerging risk factor for dementia through its repeated relationships with cognition, cSVD, and Aβ deposition.


2019 ◽  
Vol 20 (3) ◽  
pp. 776 ◽  
Author(s):  
Michael Thrippleton ◽  
Gordon Blair ◽  
Maria Valdes-Hernandez ◽  
Andreas Glatz ◽  
Scott Semple ◽  
...  

A protocol for evaluating ultrasmall superparamagnetic particles of iron oxide (USPIO) uptake and elimination in cerebral small vessel disease patients was developed and piloted. B1-insensitive R1 measurement was evaluated in vitro. Twelve participants with history of minor stroke were scanned at 3-T MRI including structural imaging, and R1 and R2* mapping. Participants were scanned (i) before and (ii) after USPIO (ferumoxytol) infusion, and again at (iii) 24–30 h and (iv) one month. Absolute and blood-normalised changes in R1 and R2* were measured in white matter (WM), deep grey matter (GM), white matter hyperintensity (WMH) and stroke lesion regions. R1 measurements were accurate across a wide range of values. R1 (p < 0.05) and R2* (p < 0.01) mapping detected increases in relaxation rate in all tissues immediately post-USPIO and at 24–30 h. R2* returned to baseline at one month. Blood-normalised R1 and R2* changes post-infusion and at 24–30 h were similar, and were greater in GM versus WM (p < 0.001). Narrower distributions were seen with R2* than for R1 mapping. R1 and R2* changes were correlated at 24–30 h (p < 0.01). MRI relaxometry permits quantitative evaluation of USPIO uptake; R2* appears to be more sensitive to USPIO than R1. Our data are explained by intravascular uptake alone, yielding estimates of cerebral blood volume, and did not support parenchymal uptake. Ferumoxytol appears to be eliminated at 1 month. The approach should be valuable in future studies to quantify both blood-pool USPIO and parenchymal uptake associated with inflammatory cells or blood-brain barrier leak.


2016 ◽  
Vol 29 (5) ◽  
pp. 793-803 ◽  
Author(s):  
Wen-wei Cao ◽  
Yao Wang ◽  
Quan Dong ◽  
Xue Chen ◽  
Yan-sheng Li ◽  
...  

ABSTRACTBackground:Cerebral small vessel disease (SVD) is the common cause of cognitive decline in the old population. MRI can be used to clarify its mechanisms. However, the surrogate markers of MRI for early cognitive impairment in SVD remain uncertain to date. We investigated the cognitive impacts of cerebral microbleeds (CMBs), diffusion tensor imaging (DTI), and brain volumetric measurements in a cohort of post-stroke non-dementia SVD patients.Methods:Fifty five non-dementia SVD patients were consecutively recruited and categorized into two groups as no cognitive impairment (NCI) (n = 23) or vascular mild cognitive impairment (VaMCI) (n = 32). Detailed neuropsychological assessment and multimodal MRI were completed.Results:The two groups differed significantly on Z scores of all cognitive domains (all p < 0.01) except for the language. There were more patients with hypertension (p = 0.038) or depression (p = 0.019) in the VaMCI than those in the NCI group. Multiple regression analysis of cognition showed periventricular mean diffusivity (MD) (β = −0.457, p < 0.01) and deep CMBs numbers (β = −0.352, p < 0.01) as the predictors of attention/executive function, which explained 45.2% of the total variance. Periventricular MD was the independent predictor for either memory (β = −0.314, p < 0.05) or visuo-spatial function (β = −0.375, p < 0.01); however, only small proportion of variance could be accounted for (9.8% and 12.4%, respectively). Language was not found to be correlated with any of the MRI parameters. No correlation was found between brain atrophic indices and any of the cognitive measures.Conclusion:Arteriosclerotic CMBs and periventricular white matter disintegrity seem to be independent MRI surrogated markers in the early stage of cognitive impairment in SVD.


2017 ◽  
Vol 13 (2) ◽  
pp. 195-206 ◽  
Author(s):  
Michael J Thrippleton ◽  
Yulu Shi ◽  
Gordon Blair ◽  
Iona Hamilton ◽  
Gordon Waiter ◽  
...  

Background Impaired autoregulation may contribute to the pathogenesis of cerebral small vessel disease. Reliable protocols for measuring microvascular reactivity are required to test this hypothesis and for providing secondary endpoints in clinical trials. Aims To develop and assess a protocol for acquisition and processing of cerebrovascular reactivity by MRI, in subcortical tissue of patients with small vessel disease and minor stroke. Methods We recruited 15 healthy volunteers, testing paradigms using 1- and 3-min 6% CO2 challenges with repeat scanning, and 15 patients with history of minor stroke. We developed a protocol to measure cerebrovascular reactivity and delay times, assessing tolerability and reproducibility in grey and white matter areas. Results The 3-min paradigm yielded more reproducible data than the 1-min paradigm (CV respectively: 7.9–15.4% and 11.7–70.2% for cerebrovascular reactivity in grey matter), and was less reproducible in white matter (16.1–24.4% and 27.5–141.0%). Tolerability was similar for the two paradigms, but mean cerebrovascular reactivity and cerebrovascular reactivity delay were significantly higher for the 3-min paradigm in most regions. Patient tolerability was high with no evidence of greater failure rate (1/15 patients vs. 2/15 volunteers withdrew at the first visit). Grey matter cerebrovascular reactivity was lower in patients than in volunteers (0.110–0.234 vs. 0.172–0.313%/mmHg; p < 0.05 in 6/8 regions), as was the white matter cerebrovascular reactivity delay (16.2–43.9 vs. 31.1–47.9 s; p < 0.05 in 4/8 regions). Conclusions An effective and well-tolerated protocol for measurement of cerebrovascular reactivity was developed for use in ongoing and future trials to investigate small vessel disease pathophysiology and to measure treatment effects.


2021 ◽  
Author(s):  
Ludovica Griffanti ◽  
Betty Raman ◽  
Fidel Alfaro-Almagro ◽  
Nicola Filippini ◽  
Mark Philip Cassar ◽  
...  

SARS-CoV-2 infection has been shown to damage multiple organs, including the brain. Multiorgan MRI can provide further insight on the repercussions of COVID-19 on organ health but requires a balance between richness and quality of data acquisition and total scan duration. We adapted the UK Biobank brain MRI protocol to produce high-quality images while being suitable as part of a post-COVID-19 multiorgan MRI exam. The analysis pipeline, also adapted from UK Biobank, includes new imaging-derived phenotypes (IDPs) designed to assess the effects of COVID-19. A first application of the protocol and pipeline was performed in 51 COVID-19 patients post-hospital discharge and 25 controls participating in the Oxford C-MORE study. The protocol acquires high resolution T1, T2-FLAIR, diffusion weighted images, susceptibility weighted images, and arterial spin labelling data in 17 minutes. The automated imaging pipeline derives 1575 IDPs, assessing brain anatomy (including olfactory bulb volume and intensity) and tissue perfusion, hyperintensities, diffusivity, and susceptibility. In the C-MORE data, these quantitative measures were consistent with clinical radiology reports. Our exploratory analysis tentatively revealed that recovered COVID-19 patients had a decrease in frontal grey matter volumes, an increased burden of white matter hyperintensities, and reduced mean diffusivity in the total and normal appearing white matter in the posterior thalamic radiation and sagittal stratum, relative to controls. These differences were generally more prominent in patients who received organ support. Increased T2* in the thalamus was also observed in recovered COVID-19 patients, with a more prominent increase for non-critical patients. This initial evidence of brain changes in COVID-19 survivors prompts the need for further investigations. Follow-up imaging in the C-MORE study is currently ongoing, and this protocol is now being used in large-scale studies. The pipeline is widely applicable and will contribute to new analyses to hopefully clarify the medium to long-term effects of COVID-19.


2018 ◽  
Author(s):  
Ian J. Deary ◽  
Stuart J. Ritchie ◽  
Susana Muñoz Maniega ◽  
Simon R. Cox ◽  
Maria C. Valdés Hernández ◽  
...  

AbstractIt is suggested that the brain’s peak width of skeletonised water mean diffusivity (PSMD) is a neuro-biomarker of processing speed, a crucial contributor to cognitive ageing. We tested whether PSMD is more strongly correlated with processing speed than with other cognitive domains, and more strongly than other structural brain MRI indices. Participants were 731 Lothian Birth Cohort 1936 members, mean age 73 years (SD=0.7); analytical sample was 656-680. Cognitive domains tested were: processing speed (5 tests), visuospatial (3), memory (3), and verbal (3). Brain-imaging variables included PSMD, white matter diffusion parameters and hyperintensity volumes, grey and white matter volumes, and perivascular spaces. PSMD was significantly associated with all processing speed tests; absolute standardised beta values were 0.11 to 0.23 (mean = 0.17). Other structural brain-imaging variables correlated as or more strongly. PSMD was significantly associated with processing speed (−0.27), visuospatial (−0.23), memory (−0.17), and general cognitive ability (−0.25). PSMD correlated with processing speed: but not more strongly than with other cognitive domains; and not more strongly than other brain-imaging measures.


Sign in / Sign up

Export Citation Format

Share Document