Abstract TP113: Delayed (21 Days) Post Stroke Treatment With RPh201, A Botany-Derived Compound, Improves Neurological Functional Recovery in a Rat Model of Embolic Stroke

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Chunyang Wang ◽  
Michael Chopp ◽  
Rui Huang ◽  
Yi Zhang ◽  
William Golembieski ◽  
...  

Introduction: Despite the recent advances in the acute stroke care, treatment options for long-term disability are limited. RPh201 is a botany-derived bioactive compound that has been shown to exert beneficial effects in various experimental models of neural injury. However, the effect of RPh201 on stroke recovery has not been investigated. The present study evaluated the effect of RPh201 on functional recovery after stroke. Methods: Young adult Wistar rats subjected to embolic middle cerebral artery occlusion (MCAO) were randomized into the following experimental groups stratified by sex (n=20/group): 1) RPh201 treatment, and 2) vehicle (cottonseed oil). RPh201 (20 μl) or vehicle were subcutaneously administered twice a week for 16 consecutive weeks starting at 21 days after MCAO. An array of behavioral tests were performed during 120 days after treatment initiation. Results: Male, but not female, ischemic rats treated with RPh201 exhibited significant (p<0.05) improvement of neurological function measured by adhesive removal test, foot-fault test, and modified neurological severity score at 90 and 120 days after initiation of treatment. Immunohistochemistry analysis showed that RPh201 treatment robustly increased neurofilament heavy chain positive axons and myelin basic protein densities in the peri-infarct area by 61% and 31% in the male rats, respectively, when compared to the vehicle treatment, which were further confirmed by Western blot analysis. The RPh201 treatment did not reduce infarct volume in both male and female rats. Conclusions: Our data demonstrated that RPh201 has a therapeutic effect on improvement of functional recovery in male ischemic rats even when the treatment was initiated 21 days post stroke. Enhanced axonal and myelination densities by RPh201 in ischemic brain may contribute to improved stroke recovery.

2021 ◽  
pp. svn-2020-000834
Author(s):  
Koteswara Rao Nalamolu ◽  
Bharath Chelluboina ◽  
Casimir A Fornal ◽  
Siva Reddy Challa ◽  
David M Pinson ◽  
...  

Background and purposeThe therapeutic potential of different stem cells for ischaemic stroke treatment is intriguing and somewhat controversial. Recent results from our laboratory have demonstrated the potential benefits of human umbilical cord blood-derived mesenchymal stem cells (MSC) in a rodent stroke model. We hypothesised that MSC treatment would effectively promote the recovery of sensory and motor function in both males and females, despite any apparent sex differences in post stroke brain injury.MethodsTransient focal cerebral ischaemia was induced in adult Sprague-Dawley rats by occlusion of the middle cerebral artery. Following the procedure, male and female rats of the untreated group were euthanised 1 day after reperfusion and their brains were used to estimate the resulting infarct volume and tissue swelling. Additional groups of stroke-induced male and female rats were treated with MSC or vehicle and were subsequently subjected to a battery of standard neurological/neurobehavioral tests (Modified Neurological Severity Score assessment, adhesive tape removal, beam walk and rotarod). The tests were administered at regular intervals (at days 1, 3, 5, 7 and 14) after reperfusion to determine the time course of neurological and functional recovery after stroke.ResultsThe infarct volume and extent of swelling of the ischaemic brain were similar in males and females. Despite similar pathological stroke lesions, the clinical manifestations of stroke were more pronounced in males than females, as indicated by the neurological scores and other tests. MSC treatment significantly improved the recovery of sensory and motor function in both sexes, and it demonstrated efficacy in both moderate stroke (females) and severe stroke (males).ConclusionsDespite sex differences in the severity of post stroke outcomes, MSC treatment promoted the recovery of sensory and motor function in male and female rats, suggesting that it may be a promising treatment for stroke.


1985 ◽  
Vol 69 (5) ◽  
pp. 587-593 ◽  
Author(s):  
N. Orzes ◽  
S. Bellentani ◽  
R. Aldini ◽  
P. Simoni ◽  
I. Ferretti ◽  
...  

1. Sex difference in the hepatic uptake of sulphobromophthalein (BSP) was investigated in male and female rats in three different experimental models. 2. In the intact animal the BSP plasma disappearance rate was significantly higher (P < 0.01) in females than in males when 0.15 or 1.5 μmol/kg body wt. was injected. Comparable values were found at the highest BSP dose (15 μmol/kg body wt.) used. 3. In the perfused liver, the first-pass hepatic extraction and the uptake velocity were significantly higher (P < 0.001) in female rats at low BSP doses (0.3–750 μmol/g of liver) whereas identical values were found at higher concentrations. 4. In hepatocytes isolated by collagenase perfusion, the BSP uptake occurs via two different uptake sites in both sexes. The Km of the high affinity sites was lower in females than in males (3.67 ± 0.58 vs 7.24±0.68 Mmol/l, P < 0.001) whereas Vmax. showed comparable values (2.70 ± 0.36 vs 2.47 ± 0.45 nmol of BSP/mg of protein, NS). In contrast, no difference was found in the kinetic parameters of the low affinity sites (Km 50.6±31.1 vs 61.0±17.5 μmol/l; Vmax. 21.9 ± 13.2 vs 25.0±3.6 nmol of BSP/mg of protein, mean ± sd, NS, females and males respectively). 5. Taken together these data show that low doses of BSP are taken up by the liver more efficiently in female than in male rats and are consistent with a sex-related difference in the affinity but not in the number of the BSP high affinity uptake sites.


Author(s):  
Ri Yu ◽  
Nam-Suk Kim ◽  
Yan Li ◽  
Jin-Young Jeong ◽  
Sang-Joon Park ◽  
...  

AbstractPost-stroke vascular remodeling, including angiogenesis, facilitates functional recovery. Proper vascular repair is important for efficient post-stroke recovery; however, the underlying mechanisms coordinating the diverse signaling pathways involved in vascular remodeling remain largely unknown. Recently, axon guidance molecules were revealed as key players in injured vessel remodeling. One such molecule, Semaphorin 3E (Sema3E), and its receptor, Plexin-D1, control vascular development by regulating vascular endothelial growth factor (VEGF) signaling. In this study, using a mouse model of transient brain infarction, we aimed to investigate whether Sema3E-Plexin-D1 signaling was involved in cerebrovascular remodeling after ischemic injury. We found that ischemic damage rapidly induced Sema3e expression in the neurons of peri-infarct regions, followed by Plexin-D1 upregulation in remodeling vessels. Interestingly, Plexin-D1 reemergence was concurrent with brain vessels entering an active angiogenic process. In line with this, Plxnd1 ablation worsened neurological deficits, infarct volume, neuronal survival rate, and blood flow recovery. Furthermore, reduced and abnormal vascular morphogenesis was caused by aberrantly increased VEGF signaling. In Plxnd1 knockout mice, we observed significant extravasation of intravenously administered tracers in the brain parenchyma, junctional protein downregulation, and mislocalization in regenerating vessels. This suggested that the absence of Sema3E-Plexin-D1 signaling is associated with blood–brain barrier (BBB) impairment. Finally, the abnormal behavioral performance, aberrant vascular phenotype, and BBB breakdown defects in Plxnd1 knockout mice were restored following the inhibition of VEGF signaling during vascular remodeling. These findings demonstrate that Sema3E-Plexin-D1 signaling can promote functional recovery by downregulating VEGF signaling in the injured adult brain.


2021 ◽  
Vol 13 ◽  
Author(s):  
Hongfei Ge ◽  
Chao Zhang ◽  
Yang Yang ◽  
Weixiang Chen ◽  
Jun Zhong ◽  
...  

Ischemic stroke has been becoming one of the leading causes resulting in mortality and adult long-term disability worldwide. Post-stroke pneumonia is a common complication in patients with ischemic stroke and always associated with 1-year mortality. Though ambroxol therapy often serves as a supplementary treatment for post-stroke pneumonia in ischemic stroke patients, its effect on functional recovery and potential mechanism after ischemic stroke remain elusive. In the present study, the results indicated that administration of 70 mg/kg and 100 mg/kg enhanced functional recovery by virtue of decreasing infarct volume. The potential mechanism, to some extent, was due to promoting NSCs differentiation into neurons and interfering NSCs differentiation into astrocytes through increasing GCase expression to activate Wnt/β-catenin signaling pathway in penumbra after ischemic stroke, which advanced basic knowledge of ambroxol in regulating NSCs differentiation and provided a feasible therapy for ischemic stroke treatment, even in other brain disorders in clinic.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Amutha Selvamani ◽  
Farida Sohrabji

Background: Analysis of circulating microRNA in young and middle aged male and female rats revealed distinct expression patterns of post-stroke microRNAs (Selvamani et al., 2014). Mir-363 expression was inversely related to infarct volume, such that adult females, who display the smallest infarct volumes, had the highest expression of miR363. Based on this association, we hypothesized that mir-363 may promote survival of ischemic neurons. As proof of concept, the present study utilized middle aged females to investigate the role of miR-363 in neuroprotection. Methods: Middle aged (12 mo) female rats were subject to middle cerebral artery occlusion (MCAo). At 4h post-stroke, animals received a tail-vein injection of miR-363 or scrambled control. Vibrissae-elicited forelimb placement (VIB) test was performed pre and post MCAo to assess motor deficits. Blood samples were drawn at 2d and 5d post stroke. All animals were terminated at 5d post MCAo and the brains processed for infarct analysis by standard histological procedures. Total RNA isolated from serum and brain was subject to QPCR amplification for miR-363 and U6 (normalization control) Results: IV injections of mir363 significantly elevated serum expression of this microRNA as compared to animals injected with scrambles control oligos, when measured 2d post stroke. Infarct volumes (cortex and striatum), at 5d post stroke, were significantly reduced in the miR-363 treated group as compared to controls (p ≤ 0.001). VIB-test indicated significant motor recovery post-stroke in the contralateral limb in miR-363 mimic treated group as compared to controls. RT-PCR analysis of brain tissue showed higher expression of miR-363 in the left (ischemic) hemisphere in the miR-363 mimic group while, no difference was observed in the non-ischemic, indicating that the mimetic is recruited to the ischemic site. Conclusion: The present study underscores the value of miRNA profiling in populations with different stroke outcomes as a strategy to identify new therapeutic targets for stroke.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dimitra Karampatsi ◽  
Alexander Zabala ◽  
Ulrika Wilhelmsson ◽  
Doortje Dekens ◽  
Ellen Vercalsteren ◽  
...  

Abstract Background Post-stroke functional recovery is severely impaired by type 2 diabetes (T2D). This is an important clinical problem since T2D is one of the most common diseases. Because weight loss-based strategies have been shown to decrease stroke risk in people with T2D, we aimed to investigate whether diet-induced weight loss can also improve post-stroke functional recovery and identify some of the underlying mechanisms. Methods T2D/obesity was induced by 6 months of high-fat diet (HFD). Weight loss was achieved by a short- or long-term dietary change, replacing HFD with standard diet for 2 or 4 months, respectively. Stroke was induced by middle cerebral artery occlusion and post-stroke recovery was assessed by sensorimotor tests. Mechanisms involved in neurovascular damage in the post-stroke recovery phase, i.e. neuroinflammation, impaired angiogenesis and cellular atrophy of GABAergic parvalbumin (PV)+ interneurons were assessed by immunohistochemistry/quantitative microscopy. Results Both short- and long-term dietary change led to similar weight loss. However, only the latter enhanced functional recovery after stroke. This effect was associated with pre-stroke normalization of fasting glucose and insulin resistance, and with the reduction of T2D-induced cellular atrophy of PV+ interneurons. Moreover, stroke recovery was associated with decreased T2D-induced neuroinflammation and reduced astrocyte reactivity in the contralateral striatum. Conclusion The global diabetes epidemic will dramatically increase the number of people in need of post-stroke treatment and care. Our results suggest that diet-induced weight loss leading to pre-stroke normalization of glucose metabolism has great potential to reduce the sequelae of stroke in the diabetic population.


1973 ◽  
Vol 74 (1) ◽  
pp. 88-104 ◽  
Author(s):  
T. Jolín ◽  
M. J. Tarin ◽  
M. D. Garcia

ABSTRACT Male and female rats of varying ages were placad on a low iodine diet (LID) plus KClO4 or 6-propyl-2-thiouracil (PTU) or on the same diet supplemented with I (control rats). Goitrogenesis was also induced with LID plus PTU in gonadectomized animals of both sexes. The weight of the control and goitrogen treated animals, and the weight and iodine content of their thyroids were determined, as well as the plasma PBI, TSH, insulin and glucose levels. The pituitary GH-like protein content was assessed by disc electrophoresis on polyacrylamide gels. If goitrogenesis was induced in young rats of both sexes starting with rats of the same age, body weight (B.W.) and pituitary growth hormone (GH) content, it was found that both the males and females developed goitres of the same size. On the contrary, when goitrogenesis was induced in adult animals, it was found that male rats, that had larger B.W. and pituitary GH content than age-paired females, developed larger goitres. However, both male and female rats were in a hypothyroid condition of comparable degree as judged by the thyroidal iodine content and the plasma PBI and TSH levels. When all the data on the PTU or KClO4-treated male and female rats of varying age and B.W. were considered together, it was observed that the weights of the thyroids increased proportionally to B.W. However, a difference in the slope of the regression of the thyroid weight over B.W. was found between male and female rats, due to the fact that adult male rats develop larger goitres than female animals. In addition, in the male rats treated with PTU, gonadectomy decreased the B.W., pituitary content of GH-like protein and, concomitantly, the size of the goitre decreased; an opposite effect was induced by ovariectomy on the female animals. However, when goitrogenesis was induced in weight-paired adult rats of both sexes, the male animals still developed larger goitres than the females. Among all the parameters studied here, the only ones which appeared to bear a consistent relationship with the size of the goitres in rats of different sexes, treated with a given goitrogen, were the rate of body growth and the amount of a pituitary GH-like protein found before the onset of the goitrogen treatment. Moreover, though the pituitary content of the GH-like protein decreased as a consequence of goitrogen treatment, it was still somewhat higher in male that in female animals. The present results suggest that GH may somehow be involved in the mechanism by which male and female rats on goitrogens develop goitres of different sizes, despite equally high plasma TSH levels.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ming Song ◽  
Fang Yuan ◽  
Xiaohong Li ◽  
Xipeng Ma ◽  
Xinmin Yin ◽  
...  

Abstract Background Inadequate copper intake and increased fructose consumption represent two important nutritional problems in the USA. Dietary copper-fructose interactions alter gut microbial activity and contribute to the development of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to determine whether dietary copper-fructose interactions alter gut microbial activity in a sex-differential manner and whether sex differences in gut microbial activity are associated with sex differences in hepatic steatosis. Methods Male and female weanling Sprague-Dawley (SD) rats were fed ad libitum with an AIN-93G purified rodent diet with defined copper content for 8 weeks. The copper content is 6 mg/kg and 1.5 mg/kg in adequate copper diet (CuA) and marginal copper diet (CuM), respectively. Animals had free access to either deionized water or deionized water containing 10% fructose (F) (w/v) as the only drink during the experiment. Body weight, calorie intake, plasma alanine aminotransferase, aspartate aminotransferase, and liver histology as well as liver triglyceride were evaluated. Fecal microbial contents were analyzed by 16S ribosomal RNA (16S rRNA) sequencing. Fecal and cecal short-chain fatty acids (SCFAs) were determined by gas chromatography-mass spectrometry (GC-MS). Results Male and female rats exhibit similar trends of changes in the body weight gain and calorie intake in response to dietary copper and fructose, with a generally higher level in male rats. Several female rats in the CuAF group developed mild steatosis, while no obvious steatosis was observed in male rats fed with CuAF or CuMF diets. Fecal 16S rRNA sequencing analysis revealed distinct alterations of the gut microbiome in male and female rats. Linear discriminant analysis (LDA) effect size (LEfSe) identified sex-specific abundant taxa in different groups. Further, total SCFAs, as well as, butyrate were decreased in a more pronounced manner in female CuMF rats than in male rats. Of note, the decreased SCFAs are concomitant with the reduced SCFA producers, but not correlated to hepatic steatosis. Conclusions Our data demonstrated sex differences in the alterations of gut microbial abundance, activities, and hepatic steatosis in response to dietary copper-fructose interaction in rats. The correlation between sex differences in metabolic phenotypes and alterations of gut microbial activities remains elusive.


Author(s):  
Olga Wronikowska ◽  
Maria Zykubek ◽  
Łukasz Kurach ◽  
Agnieszka Michalak ◽  
Anna Boguszewska-Czubara ◽  
...  

Abstract Rationale Mephedrone is a frequently overused drug of abuse that belongs to the group of novel psychoactive substances. Although its mechanism of action, as well as toxic and psychoactive effects, has been widely studied, the role of different factors that could contribute to the increased vulnerability to mephedrone abuse is still poorly understood. Objectives The aim of the presented study was to assess the impact of several factors (sex differences, social-conditioning, and chronic mild unpredictable stress — CMUS) on the liability to mephedrone-induced reward in Wistar rats. Methods The rewarding effects of mephedrone in male and female rats were assessed using the conditioned place preference (CPP) procedure. Furthermore, the impact of social factor and stress was evaluated in male rats using social-CPP and CMUS-dependent CPP, respectively. Results Mephedrone induced classic-CPP in female (10 mg/kg), as well as in male (10 and 20 mg/kg) rats. However, the impact of mephedrone treatment during social-CPP was highly dose-dependent as the rewarding effects of low dose of mephedrone (5 mg/kg; non-active in classic-CPP) were potentiated when administered during social-conditioning. Interestingly, social-conditioning with a higher dose of 20 mg/kg (that induced classic-CPP) was able to reverse these effects. Finally, CMUS potentiated rewarding effects of a low dose of mephedrone (5 mg/kg) and increased the level of corticosterone in rats’ prefrontal cortex and hippocampus. Conclusions Altogether, the presented results give new insight into possible factors underlying the vulnerability to mephedrone abuse and can serve as a basis for further studies assessing mechanisms underlying observed effects.


2019 ◽  
Vol 22 (11) ◽  
pp. 710-723 ◽  
Author(s):  
Atul P Daiwile ◽  
Subramaniam Jayanthi ◽  
Bruce Ladenheim ◽  
Michael T McCoy ◽  
Christie Brannock ◽  
...  

Abstract Background Methamphetamine (METH) use disorder is prevalent worldwide. There are reports of sex differences in quantities of drug used and relapses to drug use among individuals with METH use disorder. However, the molecular neurobiology of these potential sex differences remains unknown. Methods We trained rats to self-administer METH (0. 1 mg/kg/infusion, i.v.) on an fixed-ratio-1 schedule for 20 days using two 3-hour daily METH sessions separated by 30-minute breaks. At the end of self-administration training, rats underwent tests of cue-induced METH seeking on withdrawal days 3 and 30. Twenty-four hours later, nucleus accumbens was dissected and then used to measure neuropeptide mRNA levels. Results Behavioral results show that male rats increased the number of METH infusions earlier during self-administration training and took more METH than females. Both male and female rats could be further divided into 2 phenotypes labeled high and low takers based on the degree of escalation that they exhibited during the course of the METH self-administration experiment. Both males and females exhibited incubation of METH seeking after 30 days of forced withdrawal. Females had higher basal mRNA levels of dynorphin and hypocretin/orexin receptors than males, whereas males expressed higher vasopressin mRNA levels than females under saline and METH conditions. Unexpectedly, only males showed increased expression of nucleus accumbens dynorphin after METH self-administration. Moreover, there were significant correlations between nucleus accumbens Hcrtr1, Hcrtr2, Crhr2, and Avpr1b mRNA levels and cue-induced METH seeking only in female rats. Conclusion Our results identify some behavioral and molecular differences between male and female rats that had self-administered METH. Sexual dimorphism in responses to METH exposure should be considered when developing potential therapeutic agents against METH use disorder.


Sign in / Sign up

Export Citation Format

Share Document