Abstract P636: Social Determinants of Stroke Hospitalization and Mortality in the United States

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Randhir Sagar Yadav ◽  
Durgesh Chaudhary ◽  
Shima Shahjouei ◽  
Jiang Li ◽  
Vida Abedi ◽  
...  

Introduction: Stroke hospitalization and mortality are influenced by various social determinants. This ecological study aimed to determine the associations between social determinants and stroke hospitalization and outcome at county-level in the United States. Methods: County-level data were recorded from the Centers for Disease Control and Prevention as of January 7, 2020. We considered four outcomes: all-age (1) Ischemic and (2) Hemorrhagic stroke Death rates per 100,000 individuals (ID and HD respectively), and (3) Ischemic and (4) Hemorrhagic stroke Hospitalization rate per 1,000 Medicare beneficiaries (IH and HH respectively). Results: Data of 3,225 counties showed IH (12.5 ± 3.4) and ID (22.2 ± 5.1) were more frequent than HH (2.0 ± 0.4) and HD (9.8 ± 2.1). Income inequality as expressed by Gini Index was found to be 44.6% ± 3.6% and unemployment rate was 4.3% ± 1.5%. Only 29.8% of the counties had at least one hospital with neurological services. The uninsured rate was 11.0% ± 4.7% and people living within half a mile of a park was only 18.7% ± 17.6%. Age-adjusted obesity rate was 32.0% ± 4.5%. In regression models, age-adjusted obesity (OR for IH: 1.11; HH: 1.04) and number of hospitals with neurological services (IH: 1.40; HH: 1.50) showed an association with IH and HH. Age-adjusted obesity (ID: 1.16; HD: 1.11), unemployment (ID: 1.21; HD: 1.18) and income inequality (ID: 1.09; HD: 1.11) showed an association with ID and HD. Park access showed inverse associations with all four outcomes. Additionally, population per primary-care physician was associated with HH while number of pharmacy and uninsured rate were associated with ID. All associations and OR had p ≤0.04. Conclusion: Unemployment and income inequality are significantly associated with increased stroke mortality rates.

2020 ◽  
Vol 6 (29) ◽  
pp. eaba5908
Author(s):  
Nick Turner ◽  
Kaveh Danesh ◽  
Kelsey Moran

What is the relationship between infant mortality and poverty in the United States and how has it changed over time? We address this question by analyzing county-level data between 1960 and 2016. Our estimates suggest that level differences in mortality rates between the poorest and least poor counties decreased meaningfully between 1960 and 2000. Nearly three-quarters of the decrease occurred between 1960 and 1980, coincident with the introduction of antipoverty programs and improvements in medical care for infants. We estimate that declining inequality accounts for 18% of the national reduction in infant mortality between 1960 and 2000. However, we also find that level differences between the poorest and least poor counties remained constant between 2000 and 2016, suggesting an important role for policies that improve the health of infants in poor areas.


2020 ◽  
Author(s):  
Daniel Li ◽  
Sheila M. Gaynor ◽  
Corbin Quick ◽  
Jarvis T. Chen ◽  
Briana J.K. Stephenson ◽  
...  

ABSTRACTRacial and ethnic disparities in COVID-19 outcomes reflect the unequal burden experienced by vulnerable communities in the United States (US). Proposed explanations include socioeconomic factors that influence how people live, work, and play, and pre-existing comorbidities. It is important to assess the extent to which observed US COVID-19 racial and ethnic disparities can be explained by these factors. We study 9.8 million confirmed cases and 234,000 confirmed deaths from 2,990 US counties (3,142 total) that make up 99.8% of the total US population (327.6 out of 328.2 million people) through 11/8/20. We found national COVID-19 racial health disparities in US are partially explained by various social determinants of health and pre-existing comorbidities that have been previously proposed. However, significant unexplained racial and ethnic health disparities still persist at the US county level after adjusting for these variables. There is a pressing need to develop strategies to address not only the social determinants but also other factors, such as testing access, personal protection equipment access and exposures, as well as tailored intervention and resource allocation for vulnerable groups, in order to combat COVID-19 and reduce racial health disparities.


2021 ◽  
Author(s):  
Kunal Menda ◽  
Lucas Laird ◽  
Mykel J. Kochenderfer ◽  
Rajmonda S. Caceres

AbstractCOVID-19 epidemics have varied dramatically in nature across the United States, where some counties have clear peaks in infections, and others have had a multitude of unpredictable and non-distinct peaks. In this work, we seek to explain the diversity in epidemic progressions by considering an extension to the compartmental SEIRD model. The model we propose uses a neural network to predict the infection rate as a function of time and of the prevalence of the disease. We provide a methodology for fitting this model to available county-level data describing aggregate cases and deaths. Our method uses Expectation-Maximization in order to overcome the challenge of partial observability—that the system’s state is only partially reflected in available data. We fit a single model to data from multiple counties in the United States exhibiting different behavior. By simulating the model, we show that it is capable of exhibiting both single peak and multi-peak behavior, reproducing behavior observed in counties both in and out of the training set. We also numerically compare the error of simulations from our model with a standard SEIRD model, showing that the proposed extensions are necessary to be able to explain the spread of COVID-19.


2019 ◽  
Vol 42 (2) ◽  
pp. 210-231 ◽  
Author(s):  
Raid Amin ◽  
Hongbo Yang ◽  
Michael J. Lynch

2016 ◽  
Vol 55 ◽  
pp. 75-82 ◽  
Author(s):  
Jessie X. Fan ◽  
Ming Wen ◽  
Lori Kowaleski-Jones

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Charles D. Phillips ◽  
Obioma Nwaiwu ◽  
Szu-hsuan Lin ◽  
Rachel Edwards ◽  
Sara Imanpour ◽  
...  

Firearm policy in the United States has long been a serious policy issue. Much of the previous research on crime and firearms focused on the effects of states’ passage of concealed handgun licensing (CHL) legislation. Today, given the proliferation of CHL legislation and growing strength of the “pro-gun” movement, the primary policy focus has changed. State legislators now face issues concerning whether and how to increase access to CHLs. Because of this transformation, this research moves away from the research tradition focused on the effect of a legislative change allowing CHLs. Instead, we consider two issues more policy relevant in the current era: What are the dynamics behind CHL licensing? Do increases in concealed handgun licensing affect crime rates? Using county-level data, we found that the density of gun dealers and other contextual variables, rather than changing crime rates, had a significant effect on increases of the rates at which CHLs were issued. We also found no significant effect of CHL increases on changes in crime rates. This research suggests that the rate at which CHLs are issued and crime rates are independent of one another—crime does not drive CHLs; CHLs do not drive crime.


2020 ◽  
Author(s):  
Jaclyn L.W. Butler ◽  
Grace Wildermuth ◽  
Brian C. Thiede ◽  
David L. Brown

This paper examines the effects of population growth and decline on county-level income inequality in the United States from 1980 to 2016. Findings from previous research have shown that income inequality is positively associated with population change, but these studies have not explicitly tested for differences between the impacts of population growth and decline. Understanding the implications of population dynamics is particularly important given that many rural areas are characterized by population decline. We analyze county-level data (n=15,375 county-decades) from the Decennial Census and American Community Survey (ACS), applying fixed effects models to estimate the respective effects of population growth and decline on income inequality, to identify the processes that mediate the links between population change and inequality, and to assess whether these effects are moderated by county-level economic and demographic characteristics. We find evidence that population decline is associated with increased levels of income inequality relative to counties experiencing stable and high rates of population growth. This relationship remains robust across a variety of model specifications, including models that account for changes in counties’ employment, sociodemographic, and ethnoracial composition. We also find that the relationship between income inequality and population change varies by metropolitan status, baseline level of inequality, and region.


2012 ◽  
Vol 6 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Gant Z ◽  
Lomotey M ◽  
Hall H.I ◽  
Hu X ◽  
Guo X ◽  
...  

Background: Social determinants of health (SDH) are the social and physical factors that can influence unhealthy or risky behavior. Social determinants of health can affect the chances of acquiring an infectious disease – such as HIV – through behavioral influences and limited preventative and healthcare access. We analyzed the relationship between social determinants of health and HIV diagnosis rates to better understand the disparity in rates between different populations in the United States. Methods: Using National HIV Surveillance data and American Community Survey data at the county level, we examined the relationships between social determinants of health variables (e.g., proportion of whites, income inequality) and HIV diagnosis rates (averaged for 2006-2008) among adults and adolescents from 40 states with mature name-based HIV surveillance. Results: Analysis of data from 1,560 counties showed a significant, positive correlation between HIV diagnosis rates and income inequality (Pearson correlation coefficient ρ = 0.40) and proportion unmarried – ages >15 (ρ = 0.52). There was a significant, negative correlation between proportion of whites and rates (ρ = -0.67). Correlations were low between racespecific social determinants of health indicators and rates. Conclusions/Implications: Overall, HIV diagnosis rates increased as income inequality and the proportion unmarried increased, and rates decreased as proportion of whites increased. The data reflect the higher HIV prevalence among non-whites. Although statistical correlations were moderate, identifying and understanding these social determinants of health variables can help target prevention efforts to aid in reducing HIV diagnosis rates. Future analyses need to determine whether the higher proportion of singles reflects higher populations of gay and bisexual men.


Sign in / Sign up

Export Citation Format

Share Document