Neutrophil Enzyme Myeloperoxidase Modulates Neuronal Response in a Model of Subarachnoid Hemorrhage by Venous Injury

Stroke ◽  
2021 ◽  
Vol 52 (10) ◽  
pp. 3374-3384
Author(s):  
Aminata P. Coulibaly ◽  
Pinar Pezuk ◽  
Paul Varghese ◽  
William Gartman ◽  
Danielle Triebwasser ◽  
...  

Background and Purpose: Aneurysmal subarachnoid hemorrhage (SAH) is associated with the development of delayed cognitive deficits. Neutrophil infiltration into the central nervous system is linked to the development of these deficits after SAH. It is however unclear how neutrophil activity influences central nervous system function in SAH. The present project aims to elucidate which neutrophil factors mediate central nervous system injury and cognitive deficits after SAH. Methods: Using a murine model of SAH and mice deficient in neutrophil effector functions, we determined which neutrophil effector function is critical to the development of deficits after SAH. In vivo and in vitro techniques were used to investigate possible pathways of neutrophils effect after SAH. Results: Our results show that mice lacking functional MPO (myeloperoxidase), a neutrophil enzyme, lack both the meningeal neutrophil infiltration (wild type, sham 872 cells/meninges versus SAH 3047, P =0.023; myeloperoxidase knockout [MPOKO], sham 1677 versus SAH 1636, P =NS) and erase the cognitive deficits on Barnes maze associated with SAH (MPOKO sham versus SAH, P =NS). The reintroduction of biologically active MPO, and its substrate hydrogen peroxide (H 2 O 2 ), to the cerebrospinal fluid of MPOKO mice at the time of hemorrhage restores the spatial memory deficit observed after SAH (time to goal box MPOKO sham versus MPOKO+MPO/H 2 O 2 , P =0.001). We find evidence of changes in neurons, astrocytes, and microglia with MPO/H 2 O 2 suggesting the effect of MPO may have complex interactions with many cell types. Neurons exposed to MPO/H 2 O 2 show decreased calcium activity at baseline and after stimulation with potassium chloride. Although astrocytes and microglia are affected, changes seen in astrocytes are most consistent with inflammatory changes that likely affect neurons. Conclusions: These results implicate MPO as a mediator of neuronal dysfunction in SAH through its effect on both neurons and glia. These results show that, in SAH, the activity of innate immune cells in the meninges modulates the activity and function of the underlying brain tissue.

2020 ◽  
Author(s):  
Aminata P. Coulibaly ◽  
Pinar Pezuk ◽  
Paul Varghese ◽  
William Gartman ◽  
Danielle Triebwasser ◽  
...  

Abstract Background: Aneurysmal subarachnoid hemorrhage (SAH) is associated with the development of delayed cognitive deficits. Neutrophil infiltration into the central nervous system (CNS) is linked to the development of these deficits after SAH. It is however unclear how neutrophil activity influences CNS function in SAH. As such, the present project aims to elucidate neutrophil factors and mechanisms mediating CNS injury and cognitive deficits after SAH. Methods: Using a murine model of SAH and mice deficient in neutrophil effector functions, we determined which neutrophil effector function is critical to the development of deficits after SAH. Also, in vitro techniques were used to elucidate how neutrophils affect cellular function of neurons and glia after SAH. Results: Our results show that following SAH, neutrophils infiltrate the meninges, and not the brain parenchyma. Mice lacking functional myeloperoxidase (MPO KO), a neutrophil enzyme, lack both the meningeal neutrophil infiltration and the cognitive deficits associated with SAH. The re-introduction of biologically active MPO, and its substrate hydrogen peroxide, to the cerebrospinal fluid of MPO KO mice at the time of hemorrhage restores the spatial memory deficit observed after SAH. Furthermore, in culture, MPO affects the function of both primary neurons and astrocytes, though not microglia. Neurons exposed to MPO and its substrate show decreased calcium activity at baseline and after stimulation with potassium chloride. In addition, MPO and its substrate lead to significant astrocyte loss in culture, phenocopying a result observed in the brain after SAH. Conclusions: These results implicate MPO as a mediator of neuronal dysfunction in SAH through their effect on both neurons and astrocytes. Finally, these results show that, in SAH, the activity of innate immune cells in the meninges can modulate the activity and function of the underlying brain tissue.


2020 ◽  
Author(s):  
Aminata P. Coulibaly ◽  
Pinar Pezuk ◽  
Paul Varghese ◽  
William Gartman ◽  
Danielle Triebwasser ◽  
...  

Abstract Background: Aneurysmal subarachnoid hemorrhage (SAH) is associated with the development of delayed cognitive deficits. Neutrophil infiltration into the central nervous system (CNS) is linked to the development of these deficits after SAH. It is however unclear how neutrophil activity, direct or indirect, influences CNS function in SAH. As such, the present project aims to elucidate neutrophil factors and mechanisms mediating CNS injury and cognitive deficits after SAH. Methods: Using a murine model of SAH and mice deficient in neutrophil effector functions, we determined which neutrophil effector function is critical to the development of deficits after SAH. Also, in vitro techniques were used to elucidate whether neutrophils directly or indirectly affect neuronal function after SAH. Results: Our results show that following SAH, neutrophils infiltrate the meninges, and not the brain parenchyma. Mice lacking functional myeloperoxidase (MPO KO), a neutrophil enzyme, lack both the meningeal neutrophil infiltration and the cognitive deficits associated with SAH. The re-introduction of biologically active MPO, and its substrate hydrogen peroxide, to the cerebrospinal fluid of MPO KO mice at the time of hemorrhage restores the spatial memory deficit observed after SAH. Furthermore, MPO directly affects the function of both primary neurons and astrocytes in culture. Neurons exposed to MPO and its substrate show decreased calcium activity at baseline and after stimulation with potassium chloride. In addition, MPO and its substrate lead to significant astrocyte loss in culture, phenocopying a result observed in the brain after SAH. Conclusions: These results implicate MPO as a mediator of neuronal dysfunction in SAH through direct effect on both neurons and astrocytes. Finally, these results show that, in SAH, the activity of innate immune cells in the meninges can modulate the activity and function of the underlying brain tissue.


2019 ◽  
Author(s):  
Aminata P. Coulibaly ◽  
Pinar Pezuk ◽  
Paul Varghese ◽  
William Gartman ◽  
Danielle Triebwasser ◽  
...  

AbstractNeutrophil infiltration into the central nervous system (CNS) after injury is associated with cognitive deficits. Using a murine model of aneurysmal subarachnoid hemorrhage (SAH), we elucidate the location and mode of action of neutrophils in the CNS. Following SAH, neutrophils infiltrate the meninges, and not the brain parenchyma. Mice lacking functional myeloperoxidase (MPO KO), a neutrophil enzyme, lack both the meningeal neutrophil infiltration and the cognitive deficits associated with delayed cerebral injury from SAH. The re-introduction of biologically active MPO, and its substrate hydrogen peroxide, to the cerebrospinal fluid of MPO KO mice at the time of hemorrhage restores the spatial memory deficit observed after SAH. This implicates MPO as a mediator of neuronal dysfunction in SAH. Using primary neuronal and astrocyte cultures, we demonstrate that MPO directly affects the function of both cell types. Neurons exposed to MPO and its substrate show decreased calcium activity at baseline and after stimulation with potassium chloride. In addition, MPO and its substrate lead to significant astrocyte loss in culture, a result observed in the brain after SAH as well. These results show that, in SAH, the activity of innate immune cells in the meninges modulates the activity and function of the underlying brain tissue.


2018 ◽  
Vol 19 (9) ◽  
pp. 2741 ◽  
Author(s):  
Sarah Walker ◽  
Gaynor Spencer ◽  
Aleksandar Necakov ◽  
Robert Carlone

Retinoic acid (RA) is the biologically active metabolite of vitamin A and has become a well-established factor that induces neurite outgrowth and regeneration in both vertebrates and invertebrates. However, the underlying regulatory mechanisms that may mediate RA-induced neurite sprouting remain unclear. In the past decade, microRNAs have emerged as important regulators of nervous system development and regeneration, and have been shown to contribute to processes such as neurite sprouting. However, few studies have demonstrated the role of miRNAs in RA-induced neurite sprouting. By miRNA sequencing analysis, we identify 482 miRNAs in the regenerating central nervous system (CNS) of the mollusc Lymnaea stagnalis, 219 of which represent potentially novel miRNAs. Of the remaining conserved miRNAs, 38 show a statistically significant up- or downregulation in regenerating CNS as a result of RA treatment. We further characterized the expression of one neuronally-enriched miRNA upregulated by RA, miR-124. We demonstrate, for the first time, that miR-124 is expressed within the cell bodies and neurites of regenerating motorneurons. Moreover, we identify miR-124 expression within the growth cones of cultured ciliary motorneurons (pedal A), whereas expression in the growth cones of another class of respiratory motorneurons (right parietal A) was absent in vitro. These findings support our hypothesis that miRNAs are important regulators of retinoic acid-induced neuronal outgrowth and regeneration in regeneration-competent species.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2104 ◽  
Author(s):  
Eleonora Ficiarà ◽  
Shoeb Anwar Ansari ◽  
Monica Argenziano ◽  
Luigi Cangemi ◽  
Chiara Monge ◽  
...  

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


2021 ◽  
Vol 22 (4) ◽  
pp. 1725
Author(s):  
Diego Delgado ◽  
Ane Miren Bilbao ◽  
Maider Beitia ◽  
Ane Garate ◽  
Pello Sánchez ◽  
...  

Platelet-rich plasma (PRP) is a biologic therapy that promotes healing responses across multiple medical fields, including the central nervous system (CNS). The efficacy of this therapy depends on several factors such as the donor’s health status and age. This work aims to prove the effect of PRP on cellular models of the CNS, considering the differences between PRP from young and elderly donors. Two different PRP pools were prepared from donors 65–85 and 20–25 years old. The cellular and molecular composition of both PRPs were analyzed. Subsequently, the cellular response was evaluated in CNS in vitro models, studying proliferation, neurogenesis, synaptogenesis, and inflammation. While no differences in the cellular composition of PRPs were found, the molecular composition of the Young PRP showed lower levels of inflammatory molecules such as CCL-11, as well as the presence of other factors not found in Aged PRP (GDF-11). Although both PRPs had effects in terms of reducing neural progenitor cell apoptosis, stabilizing neuronal synapses, and decreasing inflammation in the microglia, the effect of the Young PRP was more pronounced. In conclusion, the molecular composition of the PRP, conditioned by the age of the donors, affects the magnitude of the biological response.


Sign in / Sign up

Export Citation Format

Share Document