Neural Correlates of Mental State Decoding in Human Adults: An Event-related Potential Study

2004 ◽  
Vol 16 (3) ◽  
pp. 415-426 ◽  
Author(s):  
Mark A. Sabbagh ◽  
Margaret C. Moulson ◽  
Kate L. Harkness

Successful negotiation of human social interactions rests on having a theory of mind—an understanding of how others' behaviors can be understood in terms of internal mental states, such as beliefs, desires, intentions, and emotions. A core theory-of-mind skill is the ability to decode others' mental states on the basis of observable information, such as facial expressions. Although several recent studies have focused on the neural correlates of reasoning about mental states, no research has addressed the question of what neural systems underlie mental state decoding. We used dense-array eventrelated potentials (ERP) to show that decoding mental states from pictures of eyes is associated with an N270–400 component over inferior frontal and anterior temporal regions of the right hemisphere. Source estimation procedures suggest that orbitofrontal and medial temporal regions may underlie this ERP effect. These findings suggest that different components of everyday theory-of-mind skills may rely on dissociable neural mechanisms.

Author(s):  
Angelita Wong

Depression is often associated with profound social and interpersonal functioning impairments. Negative interpersonal experiences may lead depressed individuals to withdraw from social interaction, which may in turn exacerbate the depression state (Rippere, 1980). As a result, it is of theoretical and clinical importance to understand the mechanisms underlying these social deficits. Researchers have applied the theory‐of‐mind framework to better understand the impaired social functioning in depressed individuals. Theory of mind refers to the everyday ability to attribute mental states (i.e., beliefs, desires, emotions) to others to both understand and predict their behaviour (Wellman, 1990). Research has found that individuindividuals with dysphoria (i.e. elevated scores on a measure of depression symptoms, but not necessarily a diagnosis of clinical depression) demonstrate enhanced mental state judgments (Harkness, Sabbagh, Jacobson, Chowdrey, & Chen, 2005). This study will determine neural mechanisms that may underlie this phenomenon by examining whether differences in brain activity exist between dysphoric and nondysphoric groups during mental states decoding. I will record electrophysiological data while participants are judging the mental states from pictures of eyes. Based on previous research (Sabbagh, Moulson, & Harkness, 2004), I anticipate that mental state decoding will be associated with the right inferior frontal and right anterior temporal regions of the brain. Furthermore, I hypothesize that dysphoric individuals will have greater activations in these brain regions and make significantly more accurate judgments than nondysphoric individuals when making mental state judgments.


2010 ◽  
Vol 22 (6) ◽  
pp. 1095-1111 ◽  
Author(s):  
Jennifer S. Rabin ◽  
Asaf Gilboa ◽  
Donald T. Stuss ◽  
Raymond A. Mar ◽  
R. Shayna Rosenbaum

There is an inconsistency regarding the relationship between thinking about personal past experiences during autobiographical memory (AM) and thinking about other people's mental states during theory of mind (ToM). Neuroimaging studies of AM and ToM consistently report overlap in the brain regions recruited. Lesion data, however, show that amnesic people with AM impairment can have intact ToM, suggesting that distinct neural mechanisms support these abilities [Rosenbaum, R. S., Stuss, D. T., Levine, B., & Tulving, E. Theory of mind is independent of episodic memory. Science, 318, 1257, 2007]. The current fMRI study examined the functional and neural correlates of remembering one's own experiences in response to personal photos (AM condition) and imagining others' experiences in response to strangers' photos (ToM condition). AM and ToM conditions were matched in terms of content and vividness, and were compared directly and to a common baseline. Analyses revealed common activity within frontal and temporal–parietal regions, yet midline structures exhibited greater activity during AM. More specific analyses of event construction and detail elaboration revealed unique activation of the right hippocampus during AM construction, and of lateral regions, such as the right temporo-parietal junction (TPJ) during ToM elaboration. Moreover, a region of left hippocampus/perirhinal cortex appeared to be driven by event vividness. Thus, differences in AM and ToM emerge when a common baseline is used and temporal dynamics are taken into account. Furthermore, the right TPJ and related lateral regions, and not the hippocampus, may be needed for ToM, given that this ability is intact in amnesic people.


2009 ◽  
Vol 21 (7) ◽  
pp. 1396-1405 ◽  
Author(s):  
Liane Young ◽  
Rebecca Saxe

Human moral judgment depends critically on “theory of mind,” the capacity to represent the mental states of agents. Recent studies suggest that the right TPJ (RTPJ) and, to lesser extent, the left TPJ (LTPJ), the precuneus (PC), and the medial pFC (MPFC) are robustly recruited when participants read explicit statements of an agent's beliefs and then judge the moral status of the agent's action. Real-world interactions, by contrast, often require social partners to infer each other's mental states. The current study uses fMRI to probe the role of these brain regions in supporting spontaneous mental state inference in the service of moral judgment. Participants read descriptions of a protagonist's action and then either (i) “moral” facts about the action's effect on another person or (ii) “nonmoral” facts about the situation. The RTPJ, PC, and MPFC were recruited selectively for moral over nonmoral facts, suggesting that processing moral stimuli elicits spontaneous mental state inference. In a second experiment, participants read the same scenarios, but explicit statements of belief preceded the facts: Protagonists believed their actions would cause harm or not. The response in the RTPJ, PC, and LTPJ was again higher for moral facts but also distinguished between neutral and negative outcomes. Together, the results illuminate two aspects of theory of mind in moral judgment: (1) spontaneous belief inference and (2) stimulus-driven belief integration.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mikhail Votinov ◽  
Artem Myznikov ◽  
Maya Zheltyakova ◽  
Ruslan Masharipov ◽  
Alexander Korotkov ◽  
...  

The organization of socio-cognitive processes is a multifaceted problem for which many sophisticated concepts have been proposed. One of these concepts is social intelligence (SI), i.e., the set of abilities that allow successful interaction with other people. The theory of mind (ToM) human brain network is a good candidate for the neural substrate underlying SI since it is involved in inferring the mental states of others and ourselves and predicting or explaining others’ actions. However, the relationship of ToM to SI remains poorly explored. Our recent research revealed an association between the gray matter volume of the caudate nucleus and the degree of SI as measured by the Guilford-Sullivan test. It led us to question whether this structural peculiarity is reflected in changes to the integration of the caudate with other areas of the brain associated with socio-cognitive processes, including the ToM system. We conducted seed-based functional connectivity (FC) analysis of resting-state fMRI data for 42 subjects with the caudate as a region of interest. We found that the scores of the Guilford-Sullivan test were positively correlated with the FC between seeds in the right caudate head and two clusters located within the right superior temporal gyrus and bilateral precuneus. Both regions are known to be nodes of the ToM network. Thus, the current study demonstrates that the SI level is associated with the degree of functional integration between the ToM network and the caudate nuclei.


2021 ◽  
pp. 1-24
Author(s):  
Ian A. Quillen ◽  
Melodie Yen ◽  
Stephen M. Wilson

In this study, we investigated how the brain responds to task difficulty in linguistic and non-linguistic contexts. This is important for the interpretation of functional imaging studies of neuroplasticity in post-stroke aphasia, because of the inherent difficulty of matching or controlling task difficulty in studies with neurological populations. Twenty neurologically normal individuals were scanned with fMRI as they performed a linguistic task and a non-linguistic task, each of which had two levels of difficulty. Critically, the tasks were matched across domains (linguistic, non-linguistic) for accuracy and reaction time, such that the differences between the easy and difficult conditions were equivalent across domains. We found that non-linguistic demand modulated the same set of multiple demand (MD) regions that have been identified in many prior studies. In contrast, linguistic demand modulated MD regions to a much lesser extent, especially nodes belonging to the dorsal attention network. Linguistic demand modulated a subset of language regions, with the left inferior frontal gyrus most strongly modulated. The right hemisphere region homotopic to Broca’s area was also modulated by linguistic but not non-linguistic demand. When linguistic demand was mapped relative to non-linguistic demand, we also observed domain by difficulty interactions in temporal language regions as well as a widespread bilateral semantic network. In sum, linguistic and non-linguistic demand have strikingly different neural correlates. These findings can be used to better interpret studies of patients recovering from aphasia. Some reported activations in these studies may reflect task performance differences, while others can be more confidently attributed to neuroplasticity.


2017 ◽  
Vol 4 (7) ◽  
pp. 170172 ◽  
Author(s):  
Conor M. Steckler ◽  
J. Kiley Hamlin ◽  
Michael B. Miller ◽  
Danielle King ◽  
Alan Kingstone

Owing to the hemispheric isolation resulting from a severed corpus callosum, research on split-brain patients can help elucidate the brain regions necessary and sufficient for moral judgement. Notably, typically developing adults heavily weight the intentions underlying others' moral actions, placing greater importance on valenced intentions versus outcomes when assigning praise and blame. Prioritization of intent in moral judgements may depend on neural activity in the right hemisphere's temporoparietal junction, an area implicated in reasoning about mental states. To date, split-brain research has found that the right hemisphere is necessary for intent-based moral judgement. When testing the left hemisphere using linguistically based moral vignettes, split-brain patients evaluate actions based on outcomes, not intentions. Because the right hemisphere has limited language ability relative to the left, and morality paradigms to date have involved significant linguistic demands, it is currently unknown whether the right hemisphere alone generates intent-based judgements. Here we use nonlinguistic morality plays with split-brain patient J.W. to examine the moral judgements of the disconnected right hemisphere, demonstrating a clear focus on intent. This finding indicates that the right hemisphere is not only necessary but also sufficient for intent-based moral judgement, advancing research into the neural systems supporting the moral sense.


Author(s):  
Alan M. Leslie

Knowledge of other minds poses a variety of unusual problems due to the peculiarly private nature of mental states. Some current views, impressed by the contrast between the apparently direct access we have to our own mental states and the inaccessibility of others’ mental states, argue that we understand the mental states of others by imagining that they are our own by ‘simulation’. Other current views propose that we infer both our own mental states and the mental states of others by employing a set of conjectures arrived at through general inductive reasoning over experience: a ‘folk psychology’ or ‘theory of mind’. Experimental studies, by contrast, suggest that we possess an ‘instinct’ for comprehending the informational mental states of other minds. Children develop mental state concepts uniformly and rapidly in the preschool period when general reasoning powers are limited. For example, children can reason effectively about other people’s beliefs before they can reliably calculate that 2 plus 2 equals 4. In the empirical study of the ‘theory of mind’ instinct there have been three major discoveries so far: first, that normally developing 2-year-olds are able to recognize the informational state of pretending; second, that normally developing children can, by the age of 4 years, solve a variety of false belief problems; and lastly, that this instinct is specifically impaired in children with the neurodevelopmental disorder known as ‘autism’.


2019 ◽  
Vol 9 (12) ◽  
pp. 363 ◽  
Author(s):  
Fares Al-Shargie ◽  
Usman Tariq ◽  
Omnia Hassanin ◽  
Hasan Mir ◽  
Fabio Babiloni ◽  
...  

In this paper, we present a method to quantify the coupling between brain regions under vigilance and enhanced mental states by utilizing partial directed coherence (PDC) and graph theory analysis (GTA). The vigilance state is induced using a modified version of stroop color-word task (SCWT) while the enhancement state is based on audio stimulation with a pure tone of 250 Hz. The audio stimulation was presented to the right and left ears simultaneously for one-hour while participants perform the SCWT. The quantification of mental states was performed by means of statistical analysis of indexes based on GTA, behavioral responses of time-on-task (TOT), and Brunel Mood Scale (BRMUS). The results show that PDC is very sensitive to vigilance decrement and shows that the brain connectivity network is significantly reduced with increasing TOT, p < 0.05. Meanwhile, during the enhanced state, the connectivity network maintains high connectivity as time passes and shows significant improvements compared to vigilance state. The audio stimulation enhances the connectivity network over the frontal and parietal regions and the right hemisphere. The increase in the connectivity network correlates with individual differences in the magnitude of the vigilance enhancement assessed by response time to stimuli. Our results provide evidence for enhancement of cognitive processing efficiency with audio stimulation. The BRMUS was used to evaluate the emotional states of vigilance task before and after using the audio stimulation. BRMUS factors, such as fatigue, depression, and anger, significantly decrease in the enhancement group compared to vigilance group. On the other hand, happy and calmness factors increased with audio stimulation, p < 0.05.


2019 ◽  
Vol 14 (7) ◽  
pp. 699-708 ◽  
Author(s):  
James A Dungan ◽  
Liane Young

Abstract Recent work in psychology and neuroscience has revealed important differences in the cognitive processes underlying judgments of harm and purity violations. In particular, research has demonstrated that whether a violation was committed intentionally vs accidentally has a larger impact on moral judgments of harm violations (e.g. assault) than purity violations (e.g. incest). Here, we manipulate the instructions provided to participants for a moral judgment task to further probe the boundary conditions of this intent effect. Specifically, we instructed participants undergoing functional magnetic resonance imaging to attend to either a violator’s mental states (why they acted that way) or their low-level behavior (how they acted) before delivering moral judgments. Results revealed that task instructions enhanced rather than diminished differences between how harm and purity violations are processed in brain regions for mental state reasoning or theory of mind. In particular, activity in the right temporoparietal junction increased when participants were instructed to attend to why vs how a violator acted to a greater extent for harm than for purity violations. This result constrains the potential accounts of why intentions matter less for purity violations compared to harm violations and provide further insight into the differences between distinct moral norms.


Sign in / Sign up

Export Citation Format

Share Document