scholarly journals Inhibitory control and the structural parcellation of the right inferior frontal gyrus

2020 ◽  
Author(s):  
Rune Boen ◽  
Liisa Raud ◽  
Rene J. Huster

AbstractThe right inferior frontal gyrus (rIFG) has most strongly, although not exclusively, been associated with response inhibition, not least based on covariations of behavioral performance measures and local grey matter characteristics. However, the white matter microstructure of the rIFG as well as its connectivity has been less in focus, especially when it comes to the consideration of potential subdivisions within this area. The present study reconstructed the structural connections of the three main subregions of the rIFG (i.e. pars opercularis, pars triangularis and pars orbitalis) using diffusion tensor imaging, and further assessed their associations with behavioral measures of inhibitory control. The results revealed a marked heterogeneity of the three subregions with respect to the pattern and extent of their connections, with the pars orbitalis showing the most widespread inter-regional connectivity, while the pars opercularis showed the least amount of connections. When relating behavioral performance measures of a stop signal task to brain structure, the data indicated a differential association of dorsal and ventral opercular connectivity with the go reaction time and the stopping accuracy, respectively.

2012 ◽  
Vol 117 (5) ◽  
pp. 844-850 ◽  
Author(s):  
Juan Martino ◽  
Enrique Marco de Lucas ◽  
Francisco Javier Ibáñez-Plágaro ◽  
José Manuel Valle-Folgueral ◽  
Alfonso Vázquez-Barquero

Foix-Chavany-Marie syndrome (FCMS) is a rare type of suprabulbar palsy characterized by an automaticvoluntary dissociation of the orofacial musculature. Here, the authors report an original case of FCMS that occurred intraoperatively while resecting the pars opercularis of the inferior frontal gyrus. This 25-year-old right-handed man with an incidentally diagnosed right frontotemporoinsular tumor underwent surgery using an asleep-awake-asleep technique with direct cortical and subcortical electrical stimulation and a transopercular approach to the insula. While resecting the anterior part of the pars opercularis the patient suffered sudden anarthria and bilateral facial weakness. He was unable to speak or show his teeth on command, but he was able to voluntarily move his upper and lower limbs. This syndrome lasted for 8 days. Postoperative diffusion tensor imaging tractography revealed that connections of the pars opercularis of the right inferior frontal gyrus with the frontal aslant tract (FAT) and arcuate fasciculus (AF) were damaged. This case supplies evidence for localizing the structural substrate of FCMS. It was possible, for the first time in the literature, to accurately correlate the occurrence of FCMS to the resection of connections between the FAT and AF, and the right pars opercularis of the inferior frontal gyrus. The FAT has been recently described, but it may be an important connection to mediate supplementary motor area control of orofacial movement. The present case also contributes to our knowledge of complication avoidance in operculoinsular surgery. A transopercular approach to insuloopercular gliomas can generate FCMS, especially in cases of previous contralateral lesions. The prognosis is favorable, but the patient should be informed of this particular hazard, and the surgeon should anticipate the surgical strategy in case the syndrome occurs intraoperatively in an awake patient.


2021 ◽  
Vol 12 ◽  
Author(s):  
Spencer Bell ◽  
Brett Froeliger

Nicotine addiction is associated with dysregulated inhibitory control (IC), mediated by corticothalamic circuitry including the right inferior frontal gyrus (rIFG). Among sated smokers, worse IC task performance and greater IC-related rIFG activity have been shown to be associated with greater relapse vulnerability. The present study investigated the effects of smoking abstinence on associations between IC task performance, rIFG activation, and smoking behavior. Smokers (N = 26, 15 female) completed an IC task (Go/Go/No-go) during fMRI scanning followed by a laboratory-based smoking relapse analog task (SRT) on two visits: once when sated and once following 24 h of smoking abstinence. During the SRT, smokers were provided with monetary rewards for incrementally delaying smoking. A significant main effect of No-go accuracy on latency to smoke during the SRT was observed when collapsing across smoking states (abstinent vs. sated). Similarly, a significant main effect of IC-related activation in rIFG on SRT performance was observed across states. The main effect of state, however, was non-significant in both of these models. Furthermore, the interaction between smoking state and No-go accuracy on SRT performance was non-significant, indicating a similar relationship between IC and lapse vulnerability under both sated and abstinent conditions. The state X rIFG activation interaction on SRT performance was likewise non-significant. Post-hoc whole brain analyses indicated that abstinence resulted in greater IC-related activity in the right middle frontal gyrus (MFG) and insula. Activation during IC in these regions was significantly associated with decreased No-go accuracy. Moreover, greater abstinence induced activity in right MFG during IC was associated with smoking sooner on the SRT. These findings are bolstered by the extant literature on the effects of nicotine on executive function and also contribute novel insights on how individual differences in behavioral and neuroimaging measures of IC may influence relapse propensity independent of smoking state.


2020 ◽  
Vol 9 (1) ◽  
pp. 58-70
Author(s):  
Stephanie Antons ◽  
Brand Matthias

Abstract Background and aims Diminished control over a specific behavior is a core characteristic in addictive behaviors such as problematic Internet-pornography (IP) use. First studies suggest that a hyperactivity of the impulsive system is one reason for impulsive behaviors in the context of problematic IP use. The tripartite-process theory of addiction explains neurocognitive mechanisms beyond common dual-process theories in addictive behaviors. However, the role of the reflective and interoceptive system is still unresolved. Methods The study comprised a stop-signal task (SST) including neutral and pornographic images during fMRI and questionnaires to investigate associations between symptoms of problematic IP use, craving, and neural activity of the impulsive, reflective, and interoceptive system. We examined 28 heterosexual males with varying symptom severity of problematic IP use. Results Data indicates that individuals with more symptoms of problematic IP use showed better performance in the SST which was linked to decreased insula and inferior frontal gyrus activity during pornographic image processing. An increase in craving was associated with lower activity of the ventral striatum during pornographic image processing. The interoceptive system showed varying effects. Increased insula activity during inhibitory control and decreased activity during pornographic image processing were associated with higher inhibitory control performance. Discussion and Conclusion Effects of tolerance and motivational aspects may explain the better inhibitory control performance in individuals with higher symptom severity which was associated with differential activity of the interoceptive and reflective system. Diminished control over IP use presumably results from the interaction between the impulsive, reflective, and interoceptive systems.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Akila Weerasekera ◽  
Oron Levin ◽  
Amanda Clauwaert ◽  
Kirstin-Friederike Heise ◽  
Lize Hermans ◽  
...  

Abstract Suboptimal inhibitory control is a major factor contributing to motor/cognitive deficits in older age and pathology. Here, we provide novel insights into the neurochemical biomarkers of inhibitory control in healthy young and older adults and highlight putative neurometabolic correlates of deficient inhibitory functions in normal aging. Age-related alterations in levels of glutamate–glutamine complex (Glx), N-acetylaspartate (NAA), choline (Cho), and myo-inositol (mIns) were assessed in the right inferior frontal gyrus (RIFG), pre-supplementary motor area (preSMA), bilateral sensorimotor cortex (SM1), bilateral striatum (STR), and occipital cortex (OCC) with proton magnetic resonance spectroscopy (1H-MRS). Data were collected from 30 young (age range 18–34 years) and 29 older (age range 60–74 years) adults. Associations between age-related changes in the levels of these metabolites and performance measures or reactive/proactive inhibition were examined for each age group. Glx levels in the right striatum and preSMA were associated with more efficient proactive inhibition in young adults but were not predictive for reactive inhibition performance. Higher NAA/mIns ratios in the preSMA and RIFG and lower mIns levels in the OCC were associated with better deployment of proactive and reactive inhibition in older adults. Overall, these findings suggest that altered regional concentrations of NAA and mIns constitute potential biomarkers of suboptimal inhibitory control in aging.


2015 ◽  
Vol 123 (6) ◽  
pp. 1401-1404 ◽  
Author(s):  
Guillaume Herbet ◽  
Gilles Lafargue ◽  
Fabien Almairac ◽  
Sylvie Moritz-Gasser ◽  
François Bonnetblanc ◽  
...  

The authors report the first case of a strikingly unusual speech impairment evoked by intraoperative electrostimulation in a 36-year-old right-handed patient, a well-trained singer, who underwent awake surgery for a right fronto-temporo-insular low-grade glioma. Functionally disrupting the pars opercularis of the right inferior frontal gyrus led the patient to automatically switch from a speaking to a singing mode of language production. Given the central role of the right pars opercularis in the inhibitory control network, the authors propose that this finding may be interpreted as possible evidence for a competitive and independent neurocognitive subnetwork devoted to the melodically intoned articulation of words (normal language-based vs singing-based) in subjects with high expertise. From a more clinical perspective, such data may have implications for awake neurosurgery, especially to preserve the quality of life for singers.


2013 ◽  
Vol 25 (4pt1) ◽  
pp. 931-941 ◽  
Author(s):  
Jacqueline Bruce ◽  
Philip A. Fisher ◽  
Alice M. Graham ◽  
William E. Moore ◽  
Shannon J. Peake ◽  
...  

AbstractChildren in foster care have often encountered a range of adverse experiences, including neglectful and/or abusive care and multiple caregiver transitions. Prior research findings suggest that such experiences negatively affect inhibitory control and the underlying neural circuitry. In the current study, event-related functional magnetic resonance imaging was employed during a go/no go task that assesses inhibitory control to compare the behavioral performance and brain activation of foster children and nonmaltreated children. The sample included two groups of 9- to 12-year-old children: 11 maltreated foster children and 11 nonmaltreated children living with their biological parents. There were no significant group differences on behavioral performance on the task. In contrast, patterns of brain activation differed by group. The nonmaltreated children demonstrated stronger activation than did the foster children across several regions, including the right anterior cingulate cortex, the middle frontal gyrus, and the right lingual gyrus, during correct no go trials, whereas the foster children displayed stronger activation than the nonmaltreated children in the left inferior parietal lobule and the right superior occipital cortex, including the lingual gyrus and cuneus, during incorrect no go trials. These results provide preliminary evidence that the early adversity experienced by foster children impacts the neural substrates of inhibitory control.


2006 ◽  
Vol 18 (11) ◽  
pp. 1843-1849 ◽  
Author(s):  
Darlene Floden ◽  
Donald T. Stuss

Inhibitory control is an essential part of behavior. Comprehensive knowledge of the neural underpinnings will shed light on complex behavior, its breakdown in neurological and psychological disorders, and current and future techniques for the pharmacological or structural remediation of disinhibition. This study investigated the neural mechanisms involved in rapid response inhibition. The stop signal task was used to estimate inhibitory speed in a group of neurologically normal control subjects and patients with discrete frontal lobe lesions. Task procedures were controlled to rule out probable confounds related to strategic changes in task effort. The findings indicate that the frontal lobes are necessary for inhibitory control and, furthermore, that the integrity of the right superior medial frontal region is key for rapid inhibitory control under conditions controlling for strategically slow responses, forcing reliance more on a rapid, “kill-switch” inhibitory system. These results are interpreted within an anatomical framework of corticospinal motor control.


2014 ◽  
Vol 26 (8) ◽  
pp. 1601-1614 ◽  
Author(s):  
Corey N. White ◽  
Eliza Congdon ◽  
Jeanette A. Mumford ◽  
Katherine H. Karlsgodt ◽  
Fred W. Sabb ◽  
...  

The stop-signal task, in which participants must inhibit prepotent responses, has been used to identify neural systems that vary with individual differences in inhibitory control. To explore how these differences relate to other aspects of decision making, a drift-diffusion model of simple decisions was fitted to stop-signal task data from go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants. These values were used to probe fMRI data to explore individual differences in neural activation. Faster processing of the go stimulus correlated with greater activation in the right frontal pole for both go and stop trials. On stop trials, stimulus processing speed also correlated with regions implicated in inhibitory control, including the right inferior frontal gyrus, medial frontal gyrus, and BG. Individual differences in motor execution time correlated with activation of the right parietal cortex. These findings suggest a robust relationship between the speed of stimulus processing and inhibitory processing at the neural level. This model-based approach provides novel insight into the interrelationships among decision components involved in inhibitory control and raises interesting questions about strategic adjustments in performance and inhibitory deficits associated with psychopathology.


2013 ◽  
Vol 25 (2) ◽  
pp. 157-174 ◽  
Author(s):  
Bram B. Zandbelt ◽  
Mirjam Bloemendaal ◽  
Janna Marie Hoogendam ◽  
René S. Kahn ◽  
Matthijs Vink

Stopping an action requires suppression of the primary motor cortex (M1). Inhibitory control over M1 relies on a network including the right inferior frontal cortex (rIFC) and the supplementary motor complex (SMC), but how these regions interact to exert inhibitory control over M1 is unknown. Specifically, the hierarchical position of the rIFC and SMC with respect to each other, the routes by which these regions control M1, and the causal involvement of these regions in proactive and reactive inhibition remain unclear. We used off-line repetitive TMS to perturb neural activity in the rIFC and SMC followed by fMRI to examine effects on activation in the networks involved in proactive and reactive inhibition, as assessed with a modified stop-signal task. We found repetitive TMS effects on reactive inhibition only. rIFC and SMC stimulation shortened the stop-signal RT (SSRT) and a shorter SSRT was associated with increased M1 deactivation. Furthermore, rIFC and SMC stimulation increased right striatal activation, implicating frontostriatal pathways in reactive inhibition. Finally, rIFC stimulation altered SMC activation, but SMC stimulation did not alter rIFC activation, indicating that rIFC lies upstream from SMC. These findings extend our knowledge about the functional organization of inhibitory control, an important component of executive functioning, showing that rIFC exerts reactive control over M1 via SMC and right striatum.


2010 ◽  
Vol 182 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Brendan E. Depue ◽  
Gregory C. Burgess ◽  
L. Cinnamon Bidwell ◽  
Erik G. Willcutt ◽  
Marie T. Banich

Sign in / Sign up

Export Citation Format

Share Document