scholarly journals Monitoring Coordination during Bimanual Movements: Where Is the Mastermind?

2010 ◽  
Vol 22 (3) ◽  
pp. 526-542 ◽  
Author(s):  
Julie Duque ◽  
Marco Davare ◽  
Ludovic Delaunay ◽  
Benvenuto Jacob ◽  
Ralf Saur ◽  
...  

One remarkable aspect of the human motor repertoire is the multitude of bimanual actions it contains. Still, the neural correlates of coordinated movements, in which the two hands share a common goal, remain debated. To address this issue, we designed two bimanual circling tasks that differed only in terms of goal conceptualization: a “coordination” task that required movements of both hands to adapt to each other to reach a common goal and an “independent” task that imposed a separate goal to each hand. fMRI allowed us to pinpoint three areas located in the right hemisphere that were more strongly activated in the coordination condition: the superior temporal gyrus (STG), the SMA, and the primary motor cortex (M1). We then used transcranial magnetic stimulation (TMS) to disrupt transiently the function of those three regions to determine their causal role in bimanual coordination. Right STG virtual lesions impaired bimanual coordination, whereas TMS to right M1 enhanced hand independence. TMS over SMA, left STG, or left M1 had no effect. The present study provides direct insight into the neural correlates of coordinated bimanual movements and highlights the role of right STG in such bimanual movements.

Author(s):  
Viktória Tamás ◽  
Gabriella Sebestyén ◽  
Szilvia Anett Nagy ◽  
Péter Zsolt Horváth ◽  
Ákos Mérei ◽  
...  

AbstractNeglect is a severe neuropsychological/neurological deficit that usually develops due to lesions of the posterior inferior parietal area of the right hemisphere and is characterized by a lack of attention to the left side. Our case is a proven right-handed, 30-year-old female patient with a low-grade glioma, which was located in the temporo-opercular region and also in the superior temporal gyrus of the right hemisphere. Upon presurgical planning, the motor, language, and visuospatial functions were mapped. In order to achieve this, the protocol for routine magnetic resonance imaging and navigated transcranial magnetic stimulation has been expanded, accordingly.


2019 ◽  
Author(s):  
S. A. Herff ◽  
C. Herff ◽  
A. J. Milne ◽  
G. D. Johnson ◽  
J. J. Shih ◽  
...  

AbstractRhythmic auditory stimuli are known to elicit matching activity patterns in neural populations. Furthermore, recent research has established the particular importance of high-gamma brain activity in auditory processing by showing its involvement in auditory phrase segmentation and envelope-tracking. Here, we use electrocorticographic (ECoG) recordings from eight human listeners, to see whether periodicities in high-gamma activity track the periodicities in the envelope of musical rhythms during rhythm perception and imagination. Rhythm imagination was elicited by instructing participants to imagine the rhythm to continue during pauses of several repetitions. To identify electrodes whose periodicities in high-gamma activity track the periodicities in the musical rhythms, we compute the correlation between the autocorrelations (ACC) of both the musical rhythms and the neural signals. A condition in which participants listened to white noise was used to establish a baseline. High-gamma autocorrelations in auditory areas in the superior temporal gyrus and in frontal areas on both hemispheres significantly matched the autocorrelation of the musical rhythms. Overall, numerous significant electrodes are observed on the right hemisphere. Of particular interest is a large cluster of electrodes in the right prefrontal cortex that is active during both rhythm perception and imagination. This indicates conscious processing of the rhythms’ structure as opposed to mere auditory phenomena. The ACC approach clearly highlights that high-gamma activity measured from cortical electrodes tracks both attended and imagined rhythms.


2021 ◽  
pp. 1-24
Author(s):  
Ian A. Quillen ◽  
Melodie Yen ◽  
Stephen M. Wilson

In this study, we investigated how the brain responds to task difficulty in linguistic and non-linguistic contexts. This is important for the interpretation of functional imaging studies of neuroplasticity in post-stroke aphasia, because of the inherent difficulty of matching or controlling task difficulty in studies with neurological populations. Twenty neurologically normal individuals were scanned with fMRI as they performed a linguistic task and a non-linguistic task, each of which had two levels of difficulty. Critically, the tasks were matched across domains (linguistic, non-linguistic) for accuracy and reaction time, such that the differences between the easy and difficult conditions were equivalent across domains. We found that non-linguistic demand modulated the same set of multiple demand (MD) regions that have been identified in many prior studies. In contrast, linguistic demand modulated MD regions to a much lesser extent, especially nodes belonging to the dorsal attention network. Linguistic demand modulated a subset of language regions, with the left inferior frontal gyrus most strongly modulated. The right hemisphere region homotopic to Broca’s area was also modulated by linguistic but not non-linguistic demand. When linguistic demand was mapped relative to non-linguistic demand, we also observed domain by difficulty interactions in temporal language regions as well as a widespread bilateral semantic network. In sum, linguistic and non-linguistic demand have strikingly different neural correlates. These findings can be used to better interpret studies of patients recovering from aphasia. Some reported activations in these studies may reflect task performance differences, while others can be more confidently attributed to neuroplasticity.


2004 ◽  
Vol 16 (3) ◽  
pp. 415-426 ◽  
Author(s):  
Mark A. Sabbagh ◽  
Margaret C. Moulson ◽  
Kate L. Harkness

Successful negotiation of human social interactions rests on having a theory of mind—an understanding of how others' behaviors can be understood in terms of internal mental states, such as beliefs, desires, intentions, and emotions. A core theory-of-mind skill is the ability to decode others' mental states on the basis of observable information, such as facial expressions. Although several recent studies have focused on the neural correlates of reasoning about mental states, no research has addressed the question of what neural systems underlie mental state decoding. We used dense-array eventrelated potentials (ERP) to show that decoding mental states from pictures of eyes is associated with an N270–400 component over inferior frontal and anterior temporal regions of the right hemisphere. Source estimation procedures suggest that orbitofrontal and medial temporal regions may underlie this ERP effect. These findings suggest that different components of everyday theory-of-mind skills may rely on dissociable neural mechanisms.


2005 ◽  
Vol 93 (2) ◽  
pp. 1020-1034 ◽  
Author(s):  
Eiichi Naito ◽  
Per E. Roland ◽  
Christian Grefkes ◽  
H. J. Choi ◽  
Simon Eickhoff ◽  
...  

We have previously shown that motor areas are engaged when subjects experience illusory limb movements elicited by tendon vibration. However, traditionally cytoarchitectonic area 2 is held responsible for kinesthesia. Here we use functional magnetic resonance imaging and cytoarchitectural mapping to examine whether area 2 is engaged in kinesthesia, whether it is engaged bilaterally because area 2 in non-human primates has strong callosal connections, which other areas are active members of the network for kinesthesia, and if there is a dominance for the right hemisphere in kinesthesia as has been suggested. Ten right-handed blindfolded healthy subjects participated. The tendon of the extensor carpi ulnaris muscles of the right or left hand was vibrated at 80 Hz, which elicited illusory palmar flexion in an immobile hand (illusion). As control we applied identical stimuli to the skin over the processus styloideus ulnae, which did not elicit any illusions (vibration). We found robust activations in cortical motor areas [areas 4a, 4p, 6; dorsal premotor cortex (PMD) and bilateral supplementary motor area (SMA)] and ipsilateral cerebellum during kinesthetic illusions (illusion-vibration). The illusions also activated contralateral area 2 and right area 2 was active in common irrespective of illusions of right or left hand. Right areas 44, 45, anterior part of intraparietal region (IP1) and caudo-lateral part of parietal opercular region (OP1), cortex rostral to PMD, anterior insula and superior temporal gyrus were also activated in common during illusions of right or left hand. These right-sided areas were significantly more activated than the corresponding areas in the left hemisphere. The present data, together with our previous results, suggest that human kinesthesia is associated with a network of active brain areas that consists of motor areas, cerebellum, and the right fronto-parietal areas including high-order somatosensory areas. Furthermore, our results provide evidence for a right hemisphere dominance for perception of limb movement.


Psych ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 482-490 ◽  
Author(s):  
Steven M. Platek ◽  
Judson C. Hendry

Human kin recognition activates substrates of the extended facial processing network, notably the right-hemisphere structures involved in self-face recognition and posterior medial cortical substrates. To understand the mechanisms underlying prosociality toward kin faces in comparison to other familiar faces, we investigated the neural correlates of implicit trustworthiness ratings to faces of actual kin and personal friends, controlling for activation to distracter faces. When controlling for activation associated with unknown faces, trustworthiness ratings of faces of kin, compared to friends, were associated with increased activation in the dorsal anterior cingulate cortex, posterior cingulate, and precuneous. On the other hand, trustworthiness ratings of friend faces, relative to kin faces, were associated with the lateral occipital gyrus and insular cortex. Trustworthiness ratings for unknown faces were only associated with activation in the fusiform gyrus. These findings suggest that we should employ medial cortical substrates known to be part of the self-other network when making implicit social judgements about kin, but not other classes of facial stimuli.


2020 ◽  
Vol 18 (1) ◽  
pp. 15-28
Author(s):  
Grzegorz Króliczak ◽  
Brian J. Piper ◽  
Weronika Potok ◽  
Mikołaj Buchwald ◽  
Paweł Kleka ◽  
...  

The performance of learned manual gestures (praxis) and the production of speech are thought to depend on related neural processes. If this relationship is not invoked by an unknown, third variable then shifts in their laterality, including dissociations of these two functions, would be unlikely unless the sharing of some neural resources with other functions is advantageous. This could be the case in lefthanders, in whom actions requiring manual precision are controlled by their right hemispheres, and whose representations could attract the control of skilled gesture. Functional neuroimaging (fMRI) was used to study praxis and language functions. Their lateralization indices were measured in 56 consecutively tested lefthanders (28 females), with the mean age of 23.3±4.9 years (range 18.4 – 47 years), and an Edinburgh Handedness Inventory quotient between –100 and –55.6 (with the mean of –83.8±14.2). We show that atypical, bilateral organization or right-lateralization of praxis is more common than atypical organization/lateralization of language, observed, respectively, in 23 (41%) vs. 15 (26.8%) of cases. Specifically, we found: (a) seven cases (12.5%) of clear, and an additional three cases (5.4%) of less pronounced dissociations of atypically represented praxis from typically represented language; (b) 13 cases (23.2%) with atypically organized praxis also associated with atypically organized language, and (c) only two cases (3.6%) of rather strongly atypical lateralization of language, yet with quite typical lateralization of praxis. These outcomes are consistent with an idea that, in some lefthanders, the guidance of skilled manual actions can profit from tighter links with the right hemisphere, whose motor specialization is linked in this particular population to manual precision, but in general to attentional resources, visuo-spatial processing and even bimanual coordination. Because of the presumed links of praxis with productive language, such transfers are often, and unsurprisingly accompanied by the reorganization of the latter. Yet, the very rare cases of reversed language functions, without any pronounced shifts in representations of praxis, indicate that such a pattern of segregation – or inverse dissociation – of these two functions could be maladaptive.


2004 ◽  
Vol 92 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Katja Stefan ◽  
Matthias Wycislo ◽  
Joseph Classen

The role of attention in generating motor memories remains controversial principally because it is difficult to separate the effects of attention from changes in kinematics of motor performance. We attempted to disentangle attention from performance effects by varying attention while plasticity was induced in human primary motor cortex by external stimulation in the absence of voluntary movement. A paired associative stimulation (PAS) protocol was employed consisting of repetitive application of single afferent electric stimuli, delivered to the right median nerve, paired with single-pulse transcranial magnetic stimulation (TMS) over the optimal site for activation of the right abductor pollicis brevis muscle (APB) to generate near-synchronous events in the left primary motor cortex. In experiment 1, the spatial location of attention was varied. PAS failed to induce plasticity when the subject's attention was directed to their left hand, away from the right target hand the cortical representation of which was being stimulated by PAS. In experiment 2, the grade of attention to the target hand was manipulated. PAS-induced plasticity was maximal when the subject viewed their target hand, and its magnitude was slightly reduced when the subject could only feel their hand. Conversely, plasticity was completely blocked when the subject's attention was diverted from the target hand by a competing cognitive task. A similar modulation by attention was observed for PAS-induced changes in the duration of the silent period evoked by TMS in voluntarily contracted muscle. Associative plasticity in the human motor cortex depends decisively on attention.


2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Milan Radoš ◽  
Ines Nikić ◽  
Marko Radoš ◽  
Ivica Kostović ◽  
Patrick Hof ◽  
...  

AbstractIt is known that the brain can compensate for deficits induced by acquired and developmental lesions through functional reorganization of the remaining parenchyma. Arteriovenous malformations (AVM) usually appear prenatally before a functional regional organization of the brain is fully established and patients generally do not present with motor deficits even when the AVM is located in the primary motor area indicating the redistribution of functions in cortical areas that are not pathologically altered. Here we present reorganization of the motor cortex in a patient with a large AVM involving most of the left parietal lobe and the paramedian part of the left precentral gyrus that is responsible for controlling the muscles of the lower limbs. Functional MRI showed that movements of both the right and left feet activated only the primary motor cortex in the right hemisphere, while there was no activation in the left motor cortex. This suggests that complete ipsilateral control over the movements of the right foot had been established in this patient. A reconstruction of the corticospinal tract using diffusion tensor imaging showed a near-complete absence of corticospinal fibers from the part of the left precentral gyrus affected by the AVM. From this clinical presentation it can be concluded that full compensation of motor deficits had occurred by redistributing function to the corresponding motor area of the contralateral


2021 ◽  
Author(s):  
Florian Destoky ◽  
Julie Bertels ◽  
Maxime Niesen ◽  
Vincent Wens ◽  
Marc Vander Ghinst ◽  
...  

Dyslexia is a frequent developmental disorder in which reading acquisition is delayed and that is usually associated with difficulties understanding speech in noise. At the neuronal level, children with dyslexia were reported to display abnormal cortical tracking of speech (CTS) at phrasal rate. Here, we aimed to determine if abnormal tracking is a cause or a consequence of dyslexia and if it is modulated by the severity of dyslexia or the presence of acoustic noise. We included 26 school-age children with dyslexia, 26 age-matched controls and 26 reading-level matched controls. All were native French speakers. Children's brain activity was recorded with magnetoencephalography while they listened to continuous speech in noiseless and multiple noise conditions. CTS values were compared between groups, conditions and hemispheres, and also within groups, between children with best and worse reading performance. Syllabic CTS was significantly reduced in the right superior temporal gyrus in children with dyslexia compared with controls matched for age but not for reading level. Among children with dyslexia, phrasal CTS tended to lateralize to the left hemisphere in severe dyslexia and lateralized to the right hemisphere in children with mild dyslexia and in all control groups. Finally, phrasal CTS was lower in children with dyslexia compared with age-matched controls, but only in informational noise conditions. No such effect was seen in comparison with reading-level matched controls. Overall, our results confirmed the finding of altered neuronal basis of speech perception in noiseless and babble noise conditions in dyslexia compared with age-matched peers. However, the absence of alteration in comparison with reading-level matched controls suggests that such alterations are a consequence of reduced reading experience rather than a cause of dyslexia.


Sign in / Sign up

Export Citation Format

Share Document