scholarly journals Medial Cortical Structures Mediate Implicit Trustworthiness Judgments about Kin Faces, but Not Familiar Faces: A Brief Report

Psych ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 482-490 ◽  
Author(s):  
Steven M. Platek ◽  
Judson C. Hendry

Human kin recognition activates substrates of the extended facial processing network, notably the right-hemisphere structures involved in self-face recognition and posterior medial cortical substrates. To understand the mechanisms underlying prosociality toward kin faces in comparison to other familiar faces, we investigated the neural correlates of implicit trustworthiness ratings to faces of actual kin and personal friends, controlling for activation to distracter faces. When controlling for activation associated with unknown faces, trustworthiness ratings of faces of kin, compared to friends, were associated with increased activation in the dorsal anterior cingulate cortex, posterior cingulate, and precuneous. On the other hand, trustworthiness ratings of friend faces, relative to kin faces, were associated with the lateral occipital gyrus and insular cortex. Trustworthiness ratings for unknown faces were only associated with activation in the fusiform gyrus. These findings suggest that we should employ medial cortical substrates known to be part of the self-other network when making implicit social judgements about kin, but not other classes of facial stimuli.

2017 ◽  
Vol 9 (2) ◽  
pp. 131-136 ◽  
Author(s):  
Jörg Mauler ◽  
Irene Neuner ◽  
Georg Neuloh ◽  
Bruno Fimm ◽  
Frank Boers ◽  
...  

In the past, the eloquent areas could be deliberately localised by the invasive Wada test. The very rare cases of dissociated crossed speech areas were accidentally found based on the clinical symptomatology. Today functional magnetic resonance imaging (fMRI)-based imaging can be employed to non-invasively localise the eloquent areas in brain tumour patients for therapy planning. A 41-year-old, left-handed man with a low-grade glioma in the left frontal operculum extending to the insular cortex, tension headaches, and anomic aphasia over 5 months underwent a pre-operative speech area localisation fMRI measurement, which revealed the evidence of the transhemispheric disposition, where the dominant Wernicke speech area is located on the left and the Broca’s area is strongly lateralised to the right hemisphere. The outcome of the Wada test and the intraoperative cortico-subcortical stimulation mapping were congruent with this finding. After tumour removal, language area function was fully preserved. Upon the occurrence of brain tumours with a risk of impaired speech function, the rare dissociate crossed speech areas disposition may gain a clinically relevant meaning by allowing for more extended tumour removal. Hence, for its identification, diagnostics which take into account both brain hemispheres, such as fMRI, are recommended.


2008 ◽  
Vol 20 (2) ◽  
pp. 342-355 ◽  
Author(s):  
Tomoyo Morita ◽  
Shoji Itakura ◽  
Daisuke N. Saito ◽  
Satoshi Nakashita ◽  
Tokiko Harada ◽  
...  

Individuals can experience negative emotions (e.g., embarrassment) accompanying self-evaluation immediately after recognizing their own facial image, especially if it deviates strongly from their mental representation of ideals or standards. The aim of this study was to identify the cortical regions involved in self-recognition and self-evaluation along with self-conscious emotions. To increase the range of emotions accompanying self-evaluation, we used facial feedback images chosen from a video recording, some of which deviated significantly from normal images. In total, 19 participants were asked to rate images of their own face (SELF) and those of others (OTHERS) according to how photogenic they appeared to be. After scanning the images, the participants rated how embarrassed they felt upon viewing each face. As the photogenic scores decreased, the embarrassment ratings dramatically increased for the participant's own face compared with those of others. The SELF versus OTHERS contrast significantly increased the activation of the right prefrontal cortex, bilateral insular cortex, anterior cingulate cortex, and bilateral occipital cortex. Within the right prefrontal cortex, activity in the right precentral gyrus reflected the trait of awareness of observable aspects of the self; this provided strong evidence that the right precentral gyrus is specifically involved in self-face recognition. By contrast, activity in the anterior region, which is located in the right middle inferior frontal gyrus, was modulated by the extent of embarrassment. This finding suggests that the right middle inferior frontal gyrus is engaged in self-evaluation preceded by self-face recognition based on the relevance to a standard self.


2021 ◽  
pp. 1-24
Author(s):  
Ian A. Quillen ◽  
Melodie Yen ◽  
Stephen M. Wilson

In this study, we investigated how the brain responds to task difficulty in linguistic and non-linguistic contexts. This is important for the interpretation of functional imaging studies of neuroplasticity in post-stroke aphasia, because of the inherent difficulty of matching or controlling task difficulty in studies with neurological populations. Twenty neurologically normal individuals were scanned with fMRI as they performed a linguistic task and a non-linguistic task, each of which had two levels of difficulty. Critically, the tasks were matched across domains (linguistic, non-linguistic) for accuracy and reaction time, such that the differences between the easy and difficult conditions were equivalent across domains. We found that non-linguistic demand modulated the same set of multiple demand (MD) regions that have been identified in many prior studies. In contrast, linguistic demand modulated MD regions to a much lesser extent, especially nodes belonging to the dorsal attention network. Linguistic demand modulated a subset of language regions, with the left inferior frontal gyrus most strongly modulated. The right hemisphere region homotopic to Broca’s area was also modulated by linguistic but not non-linguistic demand. When linguistic demand was mapped relative to non-linguistic demand, we also observed domain by difficulty interactions in temporal language regions as well as a widespread bilateral semantic network. In sum, linguistic and non-linguistic demand have strikingly different neural correlates. These findings can be used to better interpret studies of patients recovering from aphasia. Some reported activations in these studies may reflect task performance differences, while others can be more confidently attributed to neuroplasticity.


2019 ◽  
Vol 117 (2) ◽  
pp. 950-958 ◽  
Author(s):  
Yilu Wang ◽  
Jianqiao Ge ◽  
Hanqi Zhang ◽  
Haixia Wang ◽  
Xiaofei Xie

Engaging in altruistic behaviors is costly, but it contributes to the health and well-being of the performer of such behaviors. The present research offers a take on how this paradox can be understood. Across 2 pilot studies and 3 experiments, we showed a pain-relieving effect of performing altruistic behaviors. Acting altruistically relieved not only acutely induced physical pain among healthy adults but also chronic pain among cancer patients. Using functional MRI, we found that after individuals performed altruistic actions brain activity in the dorsal anterior cingulate cortex and bilateral insula in response to a painful shock was significantly reduced. This reduced pain-induced activation in the right insula was mediated by the neural activity in the ventral medial prefrontal cortex (VMPFC), while the activation of the VMPFC was positively correlated with the performer’s experienced meaningfulness from his or her altruistic behavior. Our findings suggest that incurring personal costs to help others may buffer the performers from unpleasant conditions.


2004 ◽  
Vol 16 (3) ◽  
pp. 415-426 ◽  
Author(s):  
Mark A. Sabbagh ◽  
Margaret C. Moulson ◽  
Kate L. Harkness

Successful negotiation of human social interactions rests on having a theory of mind—an understanding of how others' behaviors can be understood in terms of internal mental states, such as beliefs, desires, intentions, and emotions. A core theory-of-mind skill is the ability to decode others' mental states on the basis of observable information, such as facial expressions. Although several recent studies have focused on the neural correlates of reasoning about mental states, no research has addressed the question of what neural systems underlie mental state decoding. We used dense-array eventrelated potentials (ERP) to show that decoding mental states from pictures of eyes is associated with an N270–400 component over inferior frontal and anterior temporal regions of the right hemisphere. Source estimation procedures suggest that orbitofrontal and medial temporal regions may underlie this ERP effect. These findings suggest that different components of everyday theory-of-mind skills may rely on dissociable neural mechanisms.


2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Claudia Perez-Cruz ◽  
Jeanine I. H. Müller-Keuker ◽  
Urs Heilbronner ◽  
Eberhard Fuchs ◽  
Gabriele Flügge

The prefrontal cortex (PFC) plays an important role in the stress response. We filled pyramidal neurons in PFC layer III with neurobiotin and analyzed dendrites in rats submitted to chronic restraint stress and in controls. In the right prelimbic cortex (PL) of controls, apical and distal dendrites were longer than in the left PL. Stress reduced the total length of apical dendrites in right PL and abolished the hemispheric difference. In right infralimbic cortex (IL) of controls, proximal apical dendrites were longer than in left IL, and stress eliminated this hemispheric difference. No hemispheric difference was detected in anterior cingulate cortex (ACx) of controls, but stress reduced apical dendritic length in left ACx. These data demonstrate interhemispheric differences in the morphology of pyramidal neurons in PL and IL of control rats and selective effects of stress on the right hemisphere. In contrast, stress reduced dendritic length in the left ACx.


Author(s):  
Milena Radoman ◽  
Lynne Lieberman ◽  
Jagan Jimmy ◽  
Stephanie M Gorka

Abstract Temporally unpredictable stimuli influence behavior across species, as previously demonstrated for sequences of simple threats and rewards with fixed or variable onset. Neuroimaging studies have identified a specific frontolimbic circuit that may become engaged during the anticipation of temporally unpredictable threat (U-threat). However, the neural mechanisms underlying processing of temporally unpredictable reward (U-reward) are incompletely understood. It is also unclear whether these processes are mediated by overlapping or distinct neural systems. These knowledge gaps are noteworthy given that disruptions within these neural systems may lead to maladaptive response to uncertainty. Here, using functional magnetic resonance imaging data from a sample of 159 young adults, we showed that anticipation of both U-threat and U-reward elicited activation in the right anterior insula, right ventral anterior nucleus of the thalamus and right inferior frontal gyrus. U-threat also activated the right posterior insula and dorsal anterior cingulate cortex, relative to U-reward. In contrast, U-reward elicited activation in the right fusiform and left middle occipital gyrus, relative to U-threat. Although there is some overlap in the neural circuitry underlying anticipation of U-threat and U-reward, these processes appear to be largely mediated by distinct circuits. Future studies are needed to corroborate and extend these preliminary findings.


2021 ◽  
Author(s):  
Lavinia Carmen Uscătescu ◽  
Lisa Kronbichler ◽  
Renate Stelzig-Schöler ◽  
Brandy-Gale Pearce ◽  
Sarah Said-Yürekli ◽  
...  

AbstractWe applied spectral dynamic causal modelling (Friston et al. in Neuroimage 94:396–407. 10.1016/j.neuroimage.2013.12.009, 2014) to analyze the effective connectivity differences between the nodes of three resting state networks (i.e. default mode network, salience network and dorsal attention network) in a dataset of 31 male healthy controls (HC) and 25 male patients with a diagnosis of schizophrenia (SZ). Patients showed increased directed connectivity from the left hippocampus (LHC) to the: dorsal anterior cingulate cortex (DACC), right anterior insula (RAI), left frontal eye fields and the bilateral inferior parietal sulcus (LIPS & RIPS), as well as increased connectivity from the right hippocampus (RHC) to the: bilateral anterior insula (LAI & RAI), right frontal eye fields and RIPS. In SZ, negative symptoms predicted the connectivity strengths from the LHC to: the DACC, the left inferior parietal sulcus (LIPAR) and the RHC, while positive symptoms predicted the connectivity strengths from the LHC to the LIPAR and from the RHC to the LHC. These results reinforce the crucial role of hippocampus dysconnectivity in SZ pathology and its potential as a biomarker of disease severity.


2019 ◽  
Vol 286 (1908) ◽  
pp. 20191016 ◽  
Author(s):  
Amir-Homayoun Javadi ◽  
Eva Zita Patai ◽  
Eugenia Marin-Garcia ◽  
Aaron Margois ◽  
Heng-Ru M. Tan ◽  
...  

Successful navigation can require realizing the current path choice was a mistake and the best strategy is to retreat along the recent path: ‘back-track’. Despite the wealth of studies on the neural correlates of navigation little is known about backtracking. To explore the neural underpinnings of backtracking we tested humans during functional magnetic resonance imaging on their ability to navigate to a set of goal locations in a virtual desert island riven by lava which constrained the paths that could be taken. We found that on a subset of trials, participants spontaneously chose to backtrack and that the majority of these choices were optimal. During backtracking, activity increased in frontal regions and the dorsal anterior cingulate cortex, while activity was suppressed in regions associated with the core default-mode network. Using the same task, magnetoencephalography and a separate group of participants, we found that power in the alpha band was significantly decreased immediately prior to such backtracking events. These results highlight the importance for navigation of brain networks previously identified in processing internally-generated errors and that such error-detection responses may involve shifting the brain from default-mode states to aid successful spatial orientation.


2014 ◽  
Vol 28 (1) ◽  
pp. 32-46 ◽  
Author(s):  
Eligiusz Wronka ◽  
Wioleta Walentowska

Recent ERP studies demonstrate that the processing of facial emotional expression can be modulated by attention. The aim of the present study was to investigate the neural correlates of attentional influence on the emotional expression processing at early stages. We recorded ERP responses to facial stimuli containing neutral versus emotional expression in two different conditions. The first task was to discriminate facial expressions, while the second task was to categorize face gender. Enhanced positivity at occipital and occipito-temporal locations between 110 and 170 ms poststimulus was elicited by facial stimuli presented in the expression task when compared to the gender task. This effect temporally overlapped with the P1 and N170 components, which reflect the early stages of face processing. To localize the sources of the brain activity underlying observed attentional modulation, we used Standardized Low Resolution Electromagnetic Tomography. Enhanced activity within the extrastriate cortex for the expression task was obtained as the reflection of early ERP effect. Additionally, we found stronger activation within the superior temporal and the fusiform gyrus of the right hemisphere in the expression task when compared to the gender task. Our findings undoubtedly confirm that early stages of the emotional expression processing can be modified by top-down attention.


Sign in / Sign up

Export Citation Format

Share Document