scholarly journals Neuroimaging Support for Discrete Neural Correlates of Basic Emotions: A Voxel-based Meta-analysis

2010 ◽  
Vol 22 (12) ◽  
pp. 2864-2885 ◽  
Author(s):  
Katherine Vytal ◽  
Stephan Hamann

What is the basic structure of emotional experience and how is it represented in the human brain? One highly influential theory, discrete basic emotions, proposes a limited set of basic emotions such as happiness and fear, which are characterized by unique physiological and neural profiles. Although many studies using diverse methods have linked particular brain structures with specific basic emotions, evidence from individual neuroimaging studies and from neuroimaging meta-analyses has been inconclusive regarding whether basic emotions are associated with both consistent and discriminable regional brain activations. We revisited this question, using activation likelihood estimation (ALE), which allows spatially sensitive, voxelwise statistical comparison of results from multiple studies. In addition, we examined substantially more studies than previous meta-analyses. The ALE meta-analysis yielded results consistent with basic emotion theory. Each of the emotions examined (fear, anger, disgust, sadness, and happiness) was characterized by consistent neural correlates across studies, as defined by reliable correlations with regional brain activations. In addition, the activation patterns associated with each emotion were discrete (discriminable from the other emotions in pairwise contrasts) and overlapped substantially with structure–function correspondences identified using other approaches, providing converging evidence that discrete basic emotions have consistent and discriminable neural correlates. Complementing prior studies that have demonstrated neural correlates for the affective dimensions of arousal and valence, the current meta-analysis results indicate that the key elements of basic emotion views are reflected in neural correlates identified by neuroimaging studies.

2011 ◽  
Vol 32 (4) ◽  
pp. 799-819 ◽  
Author(s):  
RAJANI SEBASTIAN ◽  
ANGELA R. LAIRD ◽  
SWATHI KIRAN

ABSTRACTThis study reports an activation likelihood estimation meta-analysis of published functional neuroimaging studies of bilingualism. Four parallel meta-analyses were conducted by taking into account the proficiency of participants reported in the studies. The results of the meta-analyses suggest differences in the probabilities of activation patterns between high proficiency and moderate/low proficiency bilinguals. The Talairach coordinates of activation in first language processing were very similar to that of second language processing in the high proficient bilinguals. However, in the low proficient group, the activation clusters were generally smaller and distributed over wider areas in both the hemispheres than the clusters identified in the ALE maps from the high proficient group. These findings draw attention to the importance of language proficiency in bilingual neural representation.


2021 ◽  
Vol 19 ◽  
Author(s):  
Andy Wai Kan Yeung

: Food craving is a health issue for a considerable proportion of the general population. Medications have been introduced to alleviate the craving or reduce the appetite via a neuropharmacological approach. However, the underlying cerebral processing of the medications was largely unknown. This study aimed to meta-analyze existing neuroimaging findings. We searched PubMed, Web of Science, and Scopus to identify relevant publications. Original studies that reported brain imaging findings using functional magnetic resonance imaging (fMRI) were initially included. The reported coordinates of brain activation available from the studies were extracted and meta-analyzed with the activation likelihood estimation (ALE) approach via the software GingerALE. The overall analysis pooling data from 24 studies showed that the right claustrum and insula were the targeted sites of altered cerebral processing of food cues by the medications. Subgroup analysis pooling data from 11 studies showed that these sites had reduced activity level under medications compared to placebo. The location of this significant cluster partially overlapped with that attributable to affective value processing of food cue in a prior meta-analysis. No brain regions were found to have increased activity level by medications. These neural correlates may help explain the physiological effect of food consumption by anti-appetite and anti-obesity medications.


Author(s):  
Hehui Li ◽  
Jia Zhang ◽  
Guosheng Ding

Abstract Numerous studies have investigated the neural correlates of reading in two languages. However, reliable conclusions have not been established as to the relationship of the neural correlates underlying reading in the first (L1) and second (L2) language. Here, we conduct meta-analyses to address this issue. We found that compared to L1, the left inferior parietal lobule showed greater activation during L2 processing across all bilingual studies. We then divided the literature into two categories: bilingual participants who learned two languages with different writing systems and bilinguals who learned two languages with similar writing systems. We found that language differences in the neural correlates of reading were generally modulated by writing system similarity, except the region of the left inferior parietal lobule, which showed preferences for L2 reading in both types of bilinguals. These findings provide new insights into the brain mechanisms underlying reading in bilinguals.


2021 ◽  
Author(s):  
Antonio Criscuolo ◽  
Victor Pando-Naude ◽  
Leonardo Bonetti ◽  
Peter Vuust ◽  
Elvira Brattico

AbstractMusical expertise is a model of neuroplasticity associated with pervasive, long-lasting training effects. Indeed, decades of cognitive neuroscience widely investigated brain functional and structural changes associated with musical training, providing a widespread and variegated set of findings. However, several controversial results emerged, leading the neuroscientific community to lack a well-defined neuro-functional-anatomy of musical expertise. Here, we performed a systematic review and meta-analysis of publications investigating brain functional and structural differences between musicians and non-musicians. Eighty-four publications were included in the qualitative synthesis. Coordinate-based meta-analyses were conducted using the anatomic/activation likelihood estimation (ALE) method implemented in GingerALE, with a total of 675 foci, 79 experiments and 2780 participants. Results showed a widespread and complex array of functional and structural changes in musicians’ brains, revealing for the first time a comprehensive picture of the brain plasticity associated with musical training.


2017 ◽  
Author(s):  
Han Bossier ◽  
Ruth Seurinck ◽  
Simone Kühn ◽  
Tobias Banaschewski ◽  
Gareth J. Barker ◽  
...  

AbstractGiven the increasing amount of neuroimaging studies, there is a growing need to summarize published results. Coordinate-based meta-analyses use the locations of statistically significant local maxima with possibly the associated effect sizes to aggregate studies. In this paper, we investigate the influence of key characteristics of a coordinate-based meta-analysis on (1) the balance between false and true positives and (2) the reliability of the outcome from a coordinate-based meta-analysis. More particularly, we consider the influence of the chosen group level model at the study level (fixed effects, ordinary least squares or mixed effects models), the type of coordinate-based meta-analysis (Activation Likelihood Estimation, fixed effects and random effects meta-analysis) and the amount of studies included in the analysis (10, 20 or 35). To do this, we apply a resampling scheme on a large dataset (N = 1400) to create a test condition and compare this with an independent evaluation condition. The test condition corresponds to subsampling participants into studies and combine these using meta-analyses. The evaluation condition corresponds to a high-powered group analysis. We observe the best performance when using mixed effects models in individual studies combined with a random effects meta-analysis. This effect increases with the number of studies included in the meta-analysis. We also show that the popular Activation Likelihood Estimation procedure is a valid alternative, though the results depend on the chosen threshold for significance. Furthermore, this method requires at least 20 to 35 studies. Finally, we discuss the differences, interpretations and limitations of our results.


2021 ◽  
Vol 12 ◽  
Author(s):  
María Sol Garcés ◽  
Irene Alústiza ◽  
Anton Albajes-Eizagirre ◽  
Javier Goena ◽  
Patricio Molero ◽  
...  

Recent functional neuroimaging studies suggest that the brain networks responsible for time processing are involved during other cognitive processes, leading to a hypothesis that time-related processing is needed to perform a range of tasks across various cognitive functions. To examine this hypothesis, we analyze whether, in healthy subjects, the brain structures activated or deactivated during performance of timing and oddball-detection type tasks coincide. To this end, we conducted two independent signed differential mapping (SDM) meta-analyses of functional magnetic resonance imaging (fMRI) studies assessing the cerebral generators of the responses elicited by tasks based on timing and oddball-detection paradigms. Finally, we undertook a multimodal meta-analysis to detect brain regions common to the findings of the two previous meta-analyses. We found that healthy subjects showed significant activation in cortical areas related to timing and salience networks. The patterns of activation and deactivation corresponding to each task type partially coincided. We hypothesize that there exists a time and change-detection network that serves as a common underlying resource used in a broad range of cognitive processes.


Sign in / Sign up

Export Citation Format

Share Document