From Prestimulus Alpha Oscillation to Visual-evoked Response: An Inverted-U Function and Its Attentional Modulation

2011 ◽  
Vol 23 (6) ◽  
pp. 1379-1394 ◽  
Author(s):  
Rajasimhan Rajagovindan ◽  
Mingzhou Ding

Understanding the relation between prestimulus neural activity and subsequent stimulus processing has become an area of active investigation. Computational modeling, as well as in vitro and in vivo single-unit recordings in animal preparations, have explored mechanisms by which background synaptic activity can influence the responsiveness of cortical neurons to afferent input. How these mechanisms manifest in humans is not well understood. Although numerous EEG/MEG studies have considered the role of prestimulus alpha oscillations in the genesis of visual-evoked potentials, no consensus has emerged, and divergent reports continue to appear. The present work addresses this problem in three stages. First, a theoretical model was developed in which the background synaptic activity and the firing rate of a neural ensemble are related through a sigmoidal function. The derivative of this function, referred to as local gain, has an inverted-U shape and is postulated to be proportional to the trial-by-trial response evoked by a transient stimulus. Second, the theoretical model was extended to noninvasive studies of human visual processing, where the model variables are reinterpreted in terms of ongoing EEG oscillations and event-related potentials. Predictions were derived from the model and tested by recording high-density scalp EEG from healthy volunteers performing a trial-by-trial cued spatial visual attention task. Finally, enhanced stimulus processing by attention was linked to an increase in the overall slope of the sigmoidal function. The commonly observed reduction of alpha magnitude with attention was interpreted as signaling a shift of the underlying neural ensemble toward an optimal excitability state that enables the increase in global gain.

2020 ◽  
Vol 14 ◽  
Author(s):  
Luiza Kirasirova ◽  
Vladimir Bulanov ◽  
Alexei Ossadtchi ◽  
Alexander Kolsanov ◽  
Vasily Pyatin ◽  
...  

A P300 brain-computer interface (BCI) is a paradigm, where text characters are decoded from event-related potentials (ERPs). In a popular implementation, called P300 speller, a subject looks at a display where characters are flashing and selects one character by attending to it. The selection is recognized as the item with the strongest ERP. The speller performs well when cortical responses to target and non-target stimuli are sufficiently different. Although many strategies have been proposed for improving the BCI spelling, a relatively simple one received insufficient attention in the literature: reduction of the visual field to diminish the contribution from non-target stimuli. Previously, this idea was implemented in a single-stimulus switch that issued an urgent command like stopping a robot. To tackle this approach further, we ran a pilot experiment where ten subjects operated a traditional P300 speller or wore a binocular aperture that confined their sight to the central visual field. As intended, visual field restriction resulted in a replacement of non-target ERPs with EEG rhythms asynchronous to stimulus periodicity. Changes in target ERPs were found in half of the subjects and were individually variable. While classification accuracy was slightly better for the aperture condition (84.3 ± 2.9%, mean ± standard error) than the no-aperture condition (81.0 ± 2.6%), this difference was not statistically significant for the entire sample of subjects (N = 10). For both the aperture and no-aperture conditions, classification accuracy improved over 4 days of training, more so for the aperture condition (from 72.0 ± 6.3% to 87.0 ± 3.9% and from 72.0 ± 5.6% to 97.0 ± 2.2% for the no-aperture and aperture conditions, respectively). Although in this study BCI performance was not substantially altered, we suggest that with further refinement this approach could speed up BCI operations and reduce user fatigue. Additionally, instead of wearing an aperture, non-targets could be removed algorithmically or with a hybrid interface that utilizes an eye tracker. We further discuss how a P300 speller could be improved by taking advantage of the different physiological properties of the central and peripheral vision. Finally, we suggest that the proposed experimental approach could be used in basic research on the mechanisms of visual processing.


2020 ◽  
Vol 25 (5) ◽  
pp. 237-248
Author(s):  
Maojin Liang ◽  
Jiahao Liu ◽  
Yuexin Cai ◽  
Fei Zhao ◽  
Suijun Chen ◽  
...  

Objective: The present study investigated the characteristics of visual processing in the auditory-associated cortex in adults with hearing loss using event-related potentials. Methods: Ten subjects with bilateral postlingual hearing loss were recruited. Ten age- and sex-matched normal-hearing subjects were included as controls. Visual (“sound” and “non-sound” photos)-evoked potentials were performed. The P170 response in the occipital area as well as N1 and N2 responses in FC3 and FC4 were analyzed. Results: Adults with hearing loss had higher P170 amplitudes, significantly higher N2 amplitudes, and shorter N2 latency in response to “sound” and “non-sound” photo stimuli at both FC3 and FC4, with the exception of the N2 amplitude which responded to “sound” photo stimuli at FC3. Further topographic mapping analysis revealed that patients had a large difference in response to “sound” and “non-sound” photos in the right frontotemporal area, starting from approximately 200 to 400 ms. Localization of source showed the difference to be located in the middle frontal gyrus region (BA10) at around 266 ms. Conclusions: The significantly stronger responses to visual stimuli indicate enhanced visual processing in the auditory-associated cortex in adults with hearing loss, which may be attributed to cortical visual reorganization involving the right frontotemporal cortex.


2015 ◽  
Vol 45 (10) ◽  
pp. 2111-2122 ◽  
Author(s):  
W. Li ◽  
T. M. Lai ◽  
C. Bohon ◽  
S. K. Loo ◽  
D. McCurdy ◽  
...  

BackgroundAnorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted body image and are frequently co-morbid with each other, although their relationship remains little studied. While there is evidence of abnormalities in visual and visuospatial processing in both disorders, no study has directly compared the two. We used two complementary modalities – event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI) – to test for abnormal activity associated with early visual signaling.MethodWe acquired fMRI and ERP data in separate sessions from 15 unmedicated individuals in each of three groups (weight-restored AN, BDD, and healthy controls) while they viewed images of faces and houses of different spatial frequencies. We used joint independent component analyses to compare activity in visual systems.ResultsAN and BDD groups demonstrated similar hypoactivity in early secondary visual processing regions and the dorsal visual stream when viewing low spatial frequency faces, linked to the N170 component, as well as in early secondary visual processing regions when viewing low spatial frequency houses, linked to the P100 component. Additionally, the BDD group exhibited hyperactivity in fusiform cortex when viewing high spatial frequency houses, linked to the N170 component. Greater activity in this component was associated with lower attractiveness ratings of faces.ConclusionsResults provide preliminary evidence of similar abnormal spatiotemporal activation in AN and BDD for configural/holistic information for appearance- and non-appearance-related stimuli. This suggests a common phenotype of abnormal early visual system functioning, which may contribute to perceptual distortions.


2018 ◽  
Author(s):  
Tamar I. Regev ◽  
Jonathan Winawer ◽  
Edden M. Gerber ◽  
Robert T. Knight ◽  
Leon Y. Deouell

AbstractMuch of what is known about the timing of visual processing in the brain is inferred from intracranial studies in monkeys, with human data limited to mainly non-invasive methods with lower spatial resolution. Here, we estimated visual onset latencies from electrocorticographic (ECoG) recordings in a patient who was implanted with 112 sub-dural electrodes, distributed across the posterior cortex of the right hemisphere, for pre-surgical evaluation of intractable epilepsy. Functional MRI prior to surgery was used to determine boundaries of visual areas. The patient was presented with images of objects from several categories. Event Related Potentials (ERPs) were calculated across all categories excluding targets, and statistically reliable onset latencies were determined using a bootstrapping procedure over the single trial baseline activity in individual electrodes. The distribution of onset latencies broadly reflected the known hierarchy of visual areas, with the earliest cortical responses in primary visual cortex, and higher areas showing later responses. A clear exception to this pattern was robust, statistically reliable and spatially localized, very early responses on the bank of the posterior intra-parietal sulcus (IPS). The response in the IPS started nearly simultaneously with responses detected in peristriate visual areas, around 60 milliseconds post-stimulus onset. Our results support the notion of early visual processing in the posterior parietal lobe, not respecting traditional hierarchies, and give direct evidence for the upper limit of onset times of visual responses across the human cortex.


2013 ◽  
Vol 13 (9) ◽  
pp. 1106-1106
Author(s):  
T. Schubert ◽  
D. Rothlein ◽  
T. Brothers ◽  
K. LeDoux ◽  
B. Gordon ◽  
...  

2021 ◽  
Author(s):  
Wei Dou ◽  
Audrey Morrow ◽  
Luca Iemi ◽  
Jason Samaha

The neurogenesis of alpha-band (8-13 Hz) activity has been characterized across many different animal experiments. However, the functional role that alpha oscillations play in perception and behavior has largely been attributed to two contrasting hypotheses, with human evidence in favor of either (or both or neither) remaining sparse. On the one hand, alpha generators have been observed in relay sectors of the visual thalamus and are postulated to phasically inhibit afferent visual input in a feedforward manner 1-4. On the other hand, evidence also suggests that the direction of influence of alpha activity propagates backwards along the visual hierarchy, reflecting a feedback influence upon the visual cortex 5-9. The primary source of human evidence regarding the role of alpha phase in visual processing has been on perceptual reports 10-16, which could be modulated either by feedforward or feedback alpha activity. Thus, although these two hypotheses are not mutually exclusive, human evidence clearly supporting either one is lacking. Here, we present human subjects with large, high-contrast visual stimuli that elicit robust C1 event-related potentials (ERP), which peak between 70-80 milliseconds post-stimulus and are thought to reflect afferent primary visual cortex (V1) input 17-20. We find that the phase of ongoing alpha oscillations modulates the global field power (GFP) of the EEG during this first volley of stimulus processing (the C1 time-window). On the standard assumption 21-23 that this early activity reflects postsynaptic potentials being relayed to visual cortex from the thalamus, our results suggest that alpha phase gates visual responses during the first feed-forward sweep of processing.


2018 ◽  
Author(s):  
Gábor Csifcsák ◽  
Viktória Roxána Balla ◽  
Vera Daniella Dalos ◽  
Tünde Kilencz ◽  
Edit Magdolna Biró ◽  
...  

This study investigated the influence of action-associated predictive processes on visual event-related potentials (ERPs). In two experiments (N=17 and N=19), we sought evidence for sensory attenuation (SA) indexed by ERP amplitude reductions for self-induced stimuli when compared to passive viewing of the same images. We assessed if SA (1) is stronger for ecologically valid versus abstract stimuli (by comparing ERPs to pictures depicting hands versus checkerboards), (2) is specific to stimulus identity (certain versus uncertain action-effect contingencies), and (3) is sensitive to laterality of hand movements (dominant versus subdominant hand actions). We found reduced occipital responses for self-triggered hand stimuli very early, between 80-90 ms (C1 component), but this effect was absent for checkerboards. On the contrary, the P1 component (100-140 ms) was enhanced for all action-associated stimuli, and this effect proved to be sensitive to stimulus predictability for hands only. The parietal N1 component (170-190 ms) showed amplitude enhancement after right-hand movements for checkerboards only. Overall, our findings indicate that action-associated predictive processes attenuate early cortical responses to ecologically valid visual stimuli. Moreover, we propose that subsequent ERPs show amplitude enhancement that might result from the interaction between expectation-based SA and attention. Movement-initiated modulation of visual ERPs does not appear to show strong lateralization in healthy individuals, although the absence of lateralized effects cannot be excluded. These results can have implications for assessing the influence of action-associated predictions on visual processing in psychiatric disorders characterized by aberrant sensory predictions and alterations in hemispheric asymmetry, such as schizophrenia.


2021 ◽  
Author(s):  
Arianna Schiano Lomoriello ◽  
Antonio Maffei ◽  
Sabrina Brigadoi ◽  
Paola Sessa

Simulation models of facial expressions suggest that posterior visual areas and brain areas underpinning sensorimotor simulations might interact to improve facial expression processing. According to these models, facial mimicry, a manifestation of sensorimotor simulation, may contribute to the visual processing of facial expressions by influencing early stages. The aim of this study was to assess whether and how sensorimotor simulation influences early stages of face processing, also investigating its relationship with alexithymic traits given that previous studies have suggested that individuals with high levels of alexithymic traits (vs. individuals with low levels of alexithymic traits) tend to use sensorimotor simulation to a lesser extent. We monitored P1 and N170 ERP components of the event-related potentials (ERP) in participants performing a fine discrimination task of facial expressions and animals, as a control condition. In half of the experiment, participants could freely use their facial mimicry whereas in the other half they had their facial mimicry blocked by a gel. Our results revealed that only individuals with lower compared to high alexithymic traits showed a larger modulation of the P1 amplitude as a function of the mimicry manipulation selectively for facial expressions (but not for animals), while we did not observe any modulation of the N170. Given the null results at the behavioural level, we interpreted the P1 modulation as compensative visual processing in individuals with low levels of alexithymia under conditions of interference on the sensorimotor processing, providing a preliminary evidence in favor of sensorimotor simulation models.


Neurology ◽  
1983 ◽  
Vol 33 (9) ◽  
pp. 1219-1219 ◽  
Author(s):  
S. N. Cohen ◽  
K. Syndulko ◽  
B. Rever ◽  
J. Kraut ◽  
J. Coburn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document