Scale-invariant Characteristics of Forgetting: Toward a Unifying Account of Hippocampal Forgetting across Short and Long Timescales

2020 ◽  
Vol 32 (3) ◽  
pp. 386-402
Author(s):  
Talya Sadeh ◽  
Yoni Pertzov

After over 100 years of relative silence in the cognitive literature, recent advances in the study of the neural underpinnings of memory—specifically, the hippocampus—have led to a resurgence of interest in the topic of forgetting. This review draws a theoretically driven picture of the effects of time on forgetting of hippocampus-dependent memories. We review evidence indicating that time-dependent forgetting across short and long timescales is reflected in progressive degradation of hippocampal-dependent relational information. This evidence provides an important extension to a growing body of research accumulated in recent years, showing that—in contrast to the once prevailing view that the hippocampus is exclusively involved in memory and forgetting over long timescales—the role of the hippocampus also extends to memory and forgetting over short timescales. Thus, we maintain that similar rules govern not only remembering but also forgetting of hippocampus-dependent information over short and long timescales.

2021 ◽  
Vol 11 (3) ◽  
pp. 219
Author(s):  
Ya-Ling Yang ◽  
Yen-Hsiang Chang ◽  
Chia-Jung Li ◽  
Ying-Hsien Huang ◽  
Ming-Chao Tsai ◽  
...  

Hepatocellular carcinoma (HCC) remains one of the most lethal human cancer globally. For advanced HCC, curable plan for advanced HCC is yet to be established, and the prognosis remains poor. The detail mechanisms underlying the progression of HCC tumorigenicity and the corruption of tumor microenvironment (TME) is complex and inconclusive. A growing body of studies demonstrate microRNAs (miRs) are important regulators in the tumorigenicity and TME development. Notably, mounting evidences indicate miR-29a play a crucial role in exerting hepatoprotective effect on various types of stress and involved in the progression of HCC, which elucidates their potential theragnostic implications. In this review, we reviewed the advanced insights into the detail mechanisms by which miR-29a dictates carcinogenesis, epigenetic program, and metabolic adaptation, and implicated in the sponging activity of competitive endogenous RNAs (ceRNA) and the TME components in the scenario of HCC. Furthermore, we highlighted its clinical significance in diagnosis and prognosis, as well as the emerging therapeutics centered on the activation of miR-29a.


Author(s):  
Yin Qianmei ◽  
Su Zehong ◽  
Wang Guang ◽  
Li Hui ◽  
Gaojian Lian

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 54595-54614 ◽  
Author(s):  
Syed Attique Shah ◽  
Dursun Zafer Seker ◽  
Sufian Hameed ◽  
Dirk Draheim

2020 ◽  
Vol 392 ◽  
pp. 122261 ◽  
Author(s):  
Jiayi Li ◽  
A. Ninh Pham ◽  
Ruobin Dai ◽  
Zhiwei Wang ◽  
T. David Waite

2019 ◽  
Vol 29 (12) ◽  
pp. 5049-5060 ◽  
Author(s):  
Kainan S Wang ◽  
Mauricio R Delgado

AbstractThe ability to perceive and exercise control over an outcome is both desirable and beneficial to our well-being. It has been shown that animals and humans alike exhibit behavioral bias towards seeking control and that such bias recruits the ventromedial prefrontal cortex (vmPFC) and striatum. Yet, this bias remains to be quantitatively captured and studied neurally. Here, we employed a behavioral task to measure the preference for control and characterize its neural underpinnings. Participants made a series of binary choices between having control and no-control over a game for monetary reward. The mere presence of the control option evoked activity in the ventral striatum. Importantly, we manipulated the expected value (EV) of each choice pair to extract the pairing where participants were equally likely to choose either option. The difference in EV between the options at this point of equivalence was inferred as the subjective value of control. Strikingly, perceiving control inflated the reward value of the associated option by 30% and this value inflation was tracked by the vmPFC. Altogether, these results capture the subjective value of perceived control inherent in decision making and highlight the role of corticostriatal circuitry in the perception of control.


Glycobiology ◽  
2020 ◽  
Vol 30 (12) ◽  
pp. 941-969 ◽  
Author(s):  
Krzysztof Mikolajczyk ◽  
Radoslaw Kaczmarek ◽  
Marcin Czerwinski

Abstract N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.


2017 ◽  
Vol 313 (5) ◽  
pp. L899-L915 ◽  
Author(s):  
Fumiaki Kato ◽  
Seiichiro Sakao ◽  
Takao Takeuchi ◽  
Toshio Suzuki ◽  
Rintaro Nishimura ◽  
...  

Pulmonary arterial hypertension (PAH) is characterized by progressive obstructive remodeling of pulmonary arteries. However, no reports have described the causative role of the autophagic pathway in pulmonary vascular endothelial cell (EC) alterations associated with PAH. This study investigated the time-dependent role of the autophagic pathway in pulmonary vascular ECs and pulmonary vascular EC kinesis in a severe PAH rat model (Sugen/hypoxia rat) and evaluated whether timely induction of the autophagic pathway by rapamycin improves PAH. Hemodynamic and histological examinations as well as flow cytometry of pulmonary vascular EC-related autophagic pathways and pulmonary vascular EC kinetics in lung cell suspensions were performed. The time-dependent and therapeutic effects of rapamycin on the autophagic pathway were also assessed. Sugen/hypoxia rats treated with the vascular endothelial growth factor receptor blocker SU5416 showed increased right ventricular systolic pressure (RVSP) and numbers of obstructive vessels due to increased pulmonary vascular remodeling. The expression of the autophagic marker LC3 in ECs also changed in a time-dependent manner, in parallel with proliferation and apoptotic markers as assessed by flow cytometry. These results suggest the presence of cross talk between pulmonary vascular remodeling and the autophagic pathway, especially in small vascular lesions. Moreover, treatment of Sugen/hypoxia rats with rapamycin after SU5416 injection activated the autophagic pathway and improved the balance between cell proliferation and apoptosis in pulmonary vascular ECs to reduce RVSP and pulmonary vascular remodeling. These results suggested that the autophagic pathway can suppress PAH progression and that rapamycin-dependent activation of the autophagic pathway could ameliorate PAH.


Sign in / Sign up

Export Citation Format

Share Document