Fast Population Coding

2007 ◽  
Vol 19 (2) ◽  
pp. 404-441 ◽  
Author(s):  
Quentin J. M. Huys ◽  
Richard S. Zemel ◽  
Rama Natarajan ◽  
Peter Dayan

Uncertainty coming from the noise in its neurons and the ill-posed nature of many tasks plagues neural computations. Maybe surprisingly, many studies show that the brain manipulates these forms of uncertainty in a probabilistically consistent and normative manner, and there is now a rich theoretical literature on the capabilities of populations of neurons to implement computations in the face of uncertainty. However, one major facet of uncertainty has received comparatively little attention: time. In a dynamic, rapidly changing world, data are only temporarily relevant. Here, we analyze the computational consequences of encoding stimulus trajectories in populations of neurons. For the most obvious, simple, instantaneous encoder, the correlations induced by natural, smooth stimuli engender a decoder that requires access to information that is nonlocal both in time and across neurons. This formally amounts to a ruinous representation. We show that there is an alternative encoder that is computationally and representationally powerful in which each spike contributes independent information; it is independently decodable, in other words. We suggest this as an appropriate foundation for understanding time-varying population codes. Furthermore, we show how adaptation to temporal stimulus statistics emerges directly from the demands of simple decoding.

2003 ◽  
Vol 15 (10) ◽  
pp. 2255-2279 ◽  
Author(s):  
Maneesh Sahani ◽  
Peter Dayan

Perceptual inference fundamentally involves uncertainty, arising from noise in sensation and the ill-posed nature of many perceptual problems. Accurate perception requires that this uncertainty be correctly represented, manipulated, and learned about. The choicessubjects makein various psychophysical experiments suggest that they do indeed take such uncertainty into account when making perceptual inferences, posing the question as to how uncertainty is represented in the activities of neuronal populations. Most theoretical investigations of population coding have ignored this issue altogether; the few existing proposals that address it do so in such a way that it is fatally conflated with another facet of perceptual problems that also needs correct handling: multiplicity (that is, the simultaneous presence of multiple distinct stimuli). We present and validate a more powerful proposal for the way that population activity may encode uncertainty, both distinctly from and simultaneously with multiplicity.


2017 ◽  
Author(s):  
Anthony Stigliani ◽  
Brianna Jeska ◽  
Kalanit Grill-Spector

ABSTRACTHow is temporal information processed in human visual cortex? There is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli, then implemented a novel 2 temporal-channel encoding model to estimate the contributions of each channel. The model predicts cortical responses to time-varying stimuli from milliseconds to seconds and reveals that (i) lateral occipito-temporal regions and peripheral early visual cortex are dominated by transient responses, and (ii) ventral occipito-temporal regions and central early visual cortex are not only driven by both channels, but that transient responses exceed the sustained. These findings resolve an outstanding debate and elucidate temporal processing in human visual cortex. Importantly, this approach has vast implications because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain.


1984 ◽  
Vol 29 (7) ◽  
pp. 567-568
Author(s):  
Gilles Kirouac
Keyword(s):  
The Face ◽  

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Giulio Tononi ◽  
Chiara Cirelli

Sleep must serve an essential, universal function, one that offsets the risk of being disconnected from the environment. The synaptic homeostasis hypothesis (SHY) is an attempt to identify this essential function. Its core claim is that sleep is needed to reestablish synaptic homeostasis, which is challenged by the remarkable plasticity of the brain. In other words, sleep is “the price we pay for plasticity.” In this issue, M. G. Frank reviewed several aspects of the hypothesis and raised several issues. The comments below provide a brief summary of the motivations underlying SHY and clarify that SHY is a hypothesis not about specific mechanisms, but about a universal, essential function of sleep. This function is the preservation of synaptic homeostasis in the face of a systematic bias toward a net increase in synaptic strength—a challenge that is posed by learning during adult wake, and by massive synaptogenesis during development.


Author(s):  
Clairton Marcolongo Pereira ◽  
Tayná B. Silva ◽  
Laiz Zaché Roque ◽  
Bárbara Barros ◽  
Luiz Alexandre Moscon ◽  
...  
Keyword(s):  
The Face ◽  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Martin L. Pall

Abstract Millimeter wave (MM-wave) electromagnetic fields (EMFs) are predicted to not produce penetrating effects in the body. The electric but not magnetic part of MM-EMFs are almost completely absorbed within the outer 1 mm of the body. Rodents are reported to have penetrating MM-wave impacts on the brain, the myocardium, liver, kidney and bone marrow. MM-waves produce electromagnetic sensitivity-like changes in rodent, frog and skate tissues. In humans, MM-waves have penetrating effects including impacts on the brain, producing EEG changes and other neurological/neuropsychiatric changes, increases in apparent electromagnetic hypersensitivity and produce changes on ulcers and cardiac activity. This review focuses on several issues required to understand penetrating effects of MM-waves and microwaves: 1. Electronically generated EMFs are coherent, producing much higher electrical and magnetic forces then do natural incoherent EMFs. 2. The fixed relationship between electrical and magnetic fields found in EMFs in a vacuum or highly permeable medium such as air, predicted by Maxwell’s equations, breaks down in other materials. Specifically, MM-wave electrical fields are almost completely absorbed in the outer 1 mm of the body due to the high dielectric constant of biological aqueous phases. However, the magnetic fields are very highly penetrating. 3. Time-varying magnetic fields have central roles in producing highly penetrating effects. The primary mechanism of EMF action is voltage-gated calcium channel (VGCC) activation with the EMFs acting via their forces on the voltage sensor, rather than by depolarization of the plasma membrane. Two distinct mechanisms, an indirect and a direct mechanism, are consistent with and predicted by the physics, to explain penetrating MM-wave VGCC activation via the voltage sensor. Time-varying coherent magnetic fields, as predicted by the Maxwell–Faraday version of Faraday’s law of induction, can put forces on ions dissolved in aqueous phases deep within the body, regenerating coherent electric fields which activate the VGCC voltage sensor. In addition, time-varying magnetic fields can directly put forces on the 20 charges in the VGCC voltage sensor. There are three very important findings here which are rarely recognized in the EMF scientific literature: coherence of electronically generated EMFs; the key role of time-varying magnetic fields in generating highly penetrating effects; the key role of both modulating and pure EMF pulses in greatly increasing very short term high level time-variation of magnetic and electric fields. It is probable that genuine safety guidelines must keep nanosecond timescale-variation of coherent electric and magnetic fields below some maximum level in order to produce genuine safety. These findings have important implications with regard to 5G radiation.


2012 ◽  
Vol 23 (12) ◽  
pp. 1455-1460 ◽  
Author(s):  
Lisa Legault ◽  
Timour Al-Khindi ◽  
Michael Inzlicht

Self-affirmation produces large effects: Even a simple reminder of one’s core values reduces defensiveness against threatening information. But how, exactly, does self-affirmation work? We explored this question by examining the impact of self-affirmation on neurophysiological responses to threatening events. We hypothesized that because self-affirmation increases openness to threat and enhances approachability of unfavorable feedback, it should augment attention and emotional receptivity to performance errors. We further hypothesized that this augmentation could be assessed directly, at the level of the brain. We measured self-affirmed and nonaffirmed participants’ electrophysiological responses to making errors on a task. As we anticipated, self-affirmation elicited greater error responsiveness than did nonaffirmation, as indexed by the error-related negativity, a neural signal of error monitoring. Self-affirmed participants also performed better on the task than did nonaffirmed participants. We offer novel brain evidence that self-affirmation increases openness to threat and discuss the role of error detection in the link between self-affirmation and performance.


Author(s):  
Veryudha Eka Prameswari ◽  
ASIROTUL MA’RIFAH ◽  
NANING PUJI SURYANTINI ◽  
INDAH KUSMINDART

Dysmenorrhea is a menstrual problem that usually occurs in young women. When dysmenorrhea, interferes with activity, non-pharmacological treatment will be an alternative to reduce dysmenorrhea. One way to deal with pain in a non-pharmacological way is by intellectual distraction, with the theory of reticular activation, which can inhibit pain stimulation when a person receives adequate or excessive sensory input, which results in the inhibition of pain impulses to the brain. Intellectual distraction techniques include filling in crosswords, playing cards, doing hobbies (in bed) such as collecting stamps, writing stories. This study aims to identify the effectiveness of intellectual disorders in reducing dysmenorrhea in young women. This study uses a design that is Quasi-Experiment with a pretest and posttest design without a control group. Population In this study were 122 female students from Mojoanyar Middle School. The sample in this study were all students of Mojoanyar Middle School who experienced dysmenorrhoea who had fulfilled the inclusion criteria of 23 respondents. The tool used to determine changes in the level of pain of respondents is the Face pain rating. The intervention provided was that respondents were asked to fill in the TTS. The collected data was analyzed using SPSS data normality test using the Wilcoxon test with SPSS 23 for Windows. And it was found that before less than half (43.5%) of Intellectual Distraction or 10 respondents experienced mild pain, whereas after being given Intellectual Distraction less than half (34.8%) or 8 respondents experienced mild and moderate pain and no more respondents experienced very severe pain. Therefore young women need to reduce the intensity of menstrual pain by providing Intellectual Distractions techniques with crosswords and accessing them can be through cellphones


Sign in / Sign up

Export Citation Format

Share Document