Memory Dynamics in Attractor Networks with Saliency Weights

2010 ◽  
Vol 22 (7) ◽  
pp. 1899-1926 ◽  
Author(s):  
Huajin Tang ◽  
Haizhou Li ◽  
Rui Yan

Memory is a fundamental part of computational systems like the human brain. Theoretical models identify memories as attractors of neural network activity patterns based on the theory that attractor (recurrent) neural networks are able to capture some crucial characteristics of memory, such as encoding, storage, retrieval, and long-term and working memory. In such networks, long-term storage of the memory patterns is enabled by synaptic strengths that are adjusted according to some activity-dependent plasticity mechanisms (of which the most widely recognized is the Hebbian rule) such that the attractors of the network dynamics represent the stored memories. Most of previous studies on associative memory are focused on Hopfield-like binary networks, and the learned patterns are often assumed to be uncorrelated in a way that minimal interactions between memories are facilitated. In this letter, we restrict our attention to a more biological plausible attractor network model and study the neuronal representations of correlated patterns. We have examined the role of saliency weights in memory dynamics. Our results demonstrate that the retrieval process of the memorized patterns is characterized by the saliency distribution, which affects the landscape of the attractors. We have established the conditions that the network state converges to unique memory and multiple memories. The analytical result also holds for other cases for variable coding levels and nonbinary levels, indicating a general property emerging from correlated memories. Our results confirmed the advantage of computing with graded-response neurons over binary neurons (i.e., reducing of spurious states). It was also found that the nonuniform saliency distribution can contribute to disappearance of spurious states when they exit.

2019 ◽  
Author(s):  
Matt Udakis ◽  
Victor Pedrosa ◽  
Sophie E.L. Chamberlain ◽  
Claudia Clopath ◽  
Jack R Mellor

SummaryThe formation and maintenance of spatial representations within hippocampal cell assemblies is strongly dictated by patterns of inhibition from diverse interneuron populations. Although it is known that inhibitory synaptic strength is malleable, induction of long-term plasticity at distinct inhibitory synapses and its regulation of hippocampal network activity is not well understood. Here, we show that inhibitory synapses from parvalbumin and somatostatin expressing interneurons undergo long-term depression and potentiation respectively (PV-iLTD and SST-iLTP) during physiological activity patterns. Both forms of plasticity rely on T-type calcium channel activation to confer synapse specificity but otherwise employ distinct mechanisms. Since parvalbumin and somatostatin interneurons preferentially target perisomatic and distal dendritic regions respectively of CA1 pyramidal cells, PV-iLTD and SST-iLTP coordinate a reprioritisation of excitatory inputs from entorhinal cortex and CA3. Furthermore, circuit-level modelling reveals that PV-iLTD and SST-iLTP cooperate to stabilise place cells while facilitating representation of multiple unique environments within the hippocampal network.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Jiangbo Pu ◽  
Xiangning Li

Electrical activity of developing dissociated neuronal networks is of immense significance for understanding the general properties of neural information processing and storage. In addition, the complexity and diversity of network activity patterns make them ideal candidates for developing novel computational models and evaluating algorithms. However, there are rare databases which focus on the changing network dynamics during development. Here, we describe the design and implementation of Neuroinformation Database for Developing Networks (NDDN), a repository for electrophysiological data collected from long-term cultured hippocampal networks. The NDDN contains over 15 terabytes of multielectrode array data consisting of 25,380 items collected from 105 culture batches. Metadata including culturing and recording information and stimulation/drug application protocols are linked to each data item. A Matlab toolbox named MEAKit is also provided with the NDDN to ease the analysis of downloaded data items. We expect that NDDN may contribute to both the fields of experimental and computational neuroscience.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


2001 ◽  
Vol 6 (2) ◽  
pp. 3-14 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
I. Juodeikienė ◽  
A. Kajalavičius

A model of moisture movement in wood is presented in this paper in a two-dimensional-in-space formulation. The finite-difference technique has been used in order to obtain the solution of the problem. The model was applied to predict the moisture content in sawn boards from pine during long term storage under outdoor climatic conditions. The satisfactory agreement between the numerical solution and experimental data was obtained.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 519-523 ◽  
Author(s):  
G. M. Beattie ◽  
J. H. Crowe ◽  
A. D. Lopez ◽  
V. Cirulli ◽  
C. Ricordi ◽  
...  

2020 ◽  
Vol 59 (SL) ◽  
pp. SLLC01 ◽  
Author(s):  
Tomoki Murota ◽  
Toshiki Mimura ◽  
Ploybussara Gomasang ◽  
Shinji Yokogawa ◽  
Kazuyoshi Ueno

Sign in / Sign up

Export Citation Format

Share Document